Whole Genome Comparison of Thermus sp. NMX2 A1 Reveals Principle Carbon Metabolism Differences With Closest Relation Thermus scotoductus SA-01

W.J. Müller¹, N. Tlalajoe¹, E.D. Cason¹, D. Litthauer², O. Reva³, E. Brzuszkiewicz⁴, E. van Heerden¹

¹University of the Free State, Department of Microbial, Biochemical and Food Biotechnology
²National Control Laboratory for Biological Products, University of the Free State
³Centre for Bioinformatics and Computational Biology, Department of Biochemistry, University of Pretoria
⁴Georg-August-Universität Göttingen, Department of Genomic and Applied Microbiology
Whole Genome Comparison of *Thermus* sp. NMX2 A1 With Other Member From the Genus *Thermus*

Keywords: *Thermus* sp. NMX2 A1, *Thermus scotoductus* SA-01, Genome, Roche 454, Comparison, Calvin-Benson-Bassham

Corresponding Author:

Prof E. van Heerden

Department of Microbial, Biochemical and Food Biotechnology

Biotechnology building, Swot Road

University of the Free State

205 Nelson Mandela Drive

Park West

Bloemfontein

9301

South Africa

Tel: + 27(0) 51 401 2472

Fax: +27(0) 51 401 9376

E-mail: vanheerde@ufs.ac.za
Genome sequencing of the yellow-pigmented, thermophilic bacterium *Thermus* sp. NMX2.A1 resulted in a 2.29 Mb draft genome which encodes for 2312 proteins. The genetic relationship between various strains from the genus *Thermus* was assessed based on phylogenomic analyses using a concatenated set of conserved proteins. The resulting phylogenetic tree illustrated that *Thermus* sp. NMX2 A.1 clusters together with *T. scotoductus* SA-01 despite being isolated from vastly different geographical locations. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized, however, neither strain’s genome data was available at that point in time. Genomic comparison of the *Thermus* sp. NMX2.A1 and *T scotoductus* SA-01, as well as other closely related *Thermus* strains revealed a high degree of synteny, on both genomic and proteomic level, with processes such as denitrification and natural cell competence appearing to be conserved. However, despite this high level of similarity, analysis revealed a complete, putative Calvin-Benson-Bassham cycle in NMX2.A1 which is absent in SA-01. Analysis of horizontally transferred gene islands provide evidence that NMX2 selected these genes due to pressure from its HCO$_3^-$ rich environment which is in stark contrast to that of the deep subsurface isolated SA-01.
INTRODUCTION

The rapid growth in the number of completely sequenced bacterial and archaeal genomes has made the field of comparative genomics more feasible than ever. This in turn has started to highlight the importance of studying the micro-evolutionary relationship between closely related genomes. Micro-evolutionary processes are central to our understanding of the mechanisms of evolution, specifically the differential effects of selection on different types of genomic sequences (Jordan et al. 2002).

Databases contain multiple sets of closely related genomes from the genus Thermus for micro-evolutionary studies (Chung et al. 2000; Bricio et al. 2011). Especially relevant to this study are the strains Thermus sp. NMX2 A.1 and T. scotoductus SA-01. These two strains, isolated from a hot spring in New Mexico (USA), and a deep gold mine in South Africa respectively, share high 16S rRNA gene sequence similarity (>98%) in spite of their vast geographical separation (Hudson et al. 1989; Kieft et al. 1999). Furthermore, Kieft and co-workers (Kieft et al. 1999) showed that the two strains displayed distinct metabolic similarities: both strains were able to grow on lactate with O₂, NO₃⁻, Mn(IV), S⁰ and Fe(III)-NTA as terminal electron acceptors and both grew optimally at ca. 65°C (pH 6.5 - 7.0). Dissimilatory reduction of iron (Bester et al. 2010) and other metals, by unique protein functionalities (Opperman and Van Heerden 2007; Cason et al. 2012), in these two Thermus strains is unusual within this genus thus prompting further microevolutionary studies.

The genome of T. scotoductus SA-01 was recently fully sequenced and assembled (Gounder et al. 2011). Along with the genome sequence of Thermus sp. NMX2 A.1, presented in this paper, an opportunity now exists to identify the genetic differences
between these metabolically similar strains, as well as other available *Thermus*
genomes. In the present study we illustrate that, despite the genomic similarities of*T. scotoductus* SA-01 and *Thermus* sp. NMX2 A.1, they do harbour unexplored
species differences when compared to each other as well as with other members in
the genus *Thermus*. The most striking differences were observed when comparing
the genes of the putative Calvin-Benson-Bassham (CBB) cycle.

MATERIALS AND METHODS

Genome sequence and annotation. *Thermus* sp. NMX2.A1 was generously
provided by Prof. T.L Kieft (New Mexico Tech, USA), (Hudson *et al*. 1989). Cell
mass for DNA isolation was obtained by aerobic culture in ATCC medium 697 [4 g/L
yeast extract, 8 g/L peptone and 2 g/L NaCl; pH 7.5] at 68°C. The bacterial strain
was verified by 16S rRNA gene sequencing and comparing it to the deposited
GenBank sequence (accession number L09661.1). Genomic DNA of *Thermus* sp.
NMX2 A.1 was sequenced by GATC Biotech using a ¼ FLX plate, providing an
approximate 87-fold coverage. *De novo* assembly was performed using the Roche
454 Newbler software. Annotation was performed using the NCBI Prokaryotic
Genome Annotation Pipeline (released 2013).

Identification and analysis of horizontally acquired genomic islands.
Identification of genomic islands in concatenated contigs was performed using
SeqWord Gene Island Sniffer (SWGIS) (Bezuidt *et al*. 2009). Genomic islands
sharing DNA sequence similarities were searched by BLASTN through the Pre_GI
database (Pierneef *et al*. 2015).

Phylogenomic inference. Complete genome sequences of *Thermus* sp. NMX2 A.1
strain was compared against complete genomes of 10 reference
Thermus/Meiothermus strains (T. scotoductus SA-01, T. igniterra ATTC 700962, Thermus sp. CBB US3 UF1, T. aquaticus Y51MC23, Thermus sp. RL, T. thermophilus HB27, T. thermophilus HB8, T. oshimai JL-2, M. ruber DSM 1279, M. silvanus DSM 9946). BLASTP search revealed 1,389 clusters of orthologous proteins shared by all these organisms. All protein sequences were aligned by MUSCLE and each alignment was edited by Gblocks (Talavera and Castresana 2007). The resulting edited alignments were concatenated into an artificial amino acid super-alignment of 377,241 residues. A phylogenetic tree was inferred by the Neighbour-Joining algorithm implemented in MEGA 6.0 (Tamura et al. 2013).

Homologous protein phylogenetic tree. Three sequential orthologous sequences from the Calvin-Benson-Bassham cycle from Thermus spp. were manually concatenated into an artificial amino acid sequence. The selected proteins were: ribulose bisphosphate carboxylase small chain (EC 4.1.1.39), ribulose bisphosphate carboxylase large chain (EC 4.1.1.39) and the fructose-1,6-bisphosphate, GlpX type (EC 3.1.3.11). Thermus strains utilized were T. antranikianii DSM 12462, T. igniterra ATCC 700962, T. islandicus DSM 21543, T. oshimai DSM 12092, T. oshimai JL-2, Thermus sp. NMX2.A1 and Thermus sp. YIM 77409. A phylogenetic tree was inferred by the Neighbour-Joining algorithm implemented in MEGA 6.0 using Paracoccus yeei ATCC BAA-599 as an outlier group (Tamura et al. 2013).

Chromosomal alignment. Contigs obtained from the de novo assembly were aligned and ordered with MAUVE by using the T. scotoductus SA-01 chromosome as template (Darling et al. 2004).

Bi-directional BLAST. The annotated proteome from the Thermus sp. NMX2 A.1 contigs was compared with those from other Thermus strains: T. scotoductus SA-01, T. scotoductus K132, T. scotoductus DSM 8553, T. thermophilus HB-27, T.

Pathway Genome Database Construction. A Pathway Genome Database (PGDB) was constructed using the Pathologic module of the Pathway Tools software (http://brg.ai.sri.com/ptools/) (Karp 2001; Karp et al. 2002). Genes and proteins were imported into Pathologic from the annotated genome sequences in Genbank file format and MetaCyc (Caspi et al. 2014) was selected as the reference pathway database. Comparisons of the putative Calvin-Benson-Bassham cycles of Thermus sp. NMX2.A1 and Thermus spp. available in the BioCyc PGDB database (T. antranikianii DSM 12462, T. igniterraе ATCC 700962, T. islandicus DSM 21543, T. oshimai JL-2, T. scotoductus SA-01, T. aquaticus Y51MC23, T. caliditerraе, T. filiformis, T. sp. CCB_US3_UF1, T. thermophilus HB27, T. thermophilus HB8, T. thermophilus JL-18 and T. thermophilus SG0.5JP17-16) were performed using the Species Compare tool in Pathway Tools.

RESULTS AND DISCUSSION

Assembly of sequenced data The results for the de novo genome assembly yielded 132 contigs and showed an approximate genome size of 2,293 Mbp (NCBI Accession ATNI00000000.1) which is similar to the genome size of T. scotoductus SA-01 consisting of 2,346 Mbp. Table 1 illustrates some genome features of sequenced Thermus strains including Thermus sp. NMX2.A1.
TABLE 1
Comparison of genome features of sequenced *Thermus* strains (taken from NCBI)

<table>
<thead>
<tr>
<th>Thermus strain</th>
<th>Chromosome size (Mb)</th>
<th>Plasmid name</th>
<th>Plasmid size (bp)</th>
<th>GC %</th>
<th>tRNA</th>
<th>rRNA</th>
<th>Other RNA</th>
<th>Genes</th>
<th>Proteins</th>
<th>Pseudogene</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. aquaticus Y51MC23</td>
<td>2.34</td>
<td></td>
<td></td>
<td>68</td>
<td>50</td>
<td>4</td>
<td></td>
<td>2593</td>
<td>2539</td>
<td></td>
</tr>
<tr>
<td>T. antranikianii DSM 12462</td>
<td>2.16</td>
<td></td>
<td></td>
<td>64.8</td>
<td>47</td>
<td>8</td>
<td>1</td>
<td>2298</td>
<td>2220</td>
<td>22</td>
</tr>
<tr>
<td>T. caliditerra YIM 77777</td>
<td>2.22</td>
<td></td>
<td></td>
<td>67.2</td>
<td>50</td>
<td>8</td>
<td>1</td>
<td>2306</td>
<td>2198</td>
<td>49</td>
</tr>
<tr>
<td>T. filiformis ATT43280</td>
<td>2.39</td>
<td></td>
<td></td>
<td>69</td>
<td>47</td>
<td>6</td>
<td>1</td>
<td>2405</td>
<td>2211</td>
<td>140</td>
</tr>
<tr>
<td>T. igniterra ATCC 700962</td>
<td>2.23</td>
<td></td>
<td></td>
<td>68.8</td>
<td>43</td>
<td>7</td>
<td>1</td>
<td>2339</td>
<td>2276</td>
<td>12</td>
</tr>
<tr>
<td>T. islandicus DSM 21543</td>
<td>2.26</td>
<td></td>
<td></td>
<td>68.3</td>
<td>47</td>
<td>9</td>
<td>1</td>
<td>2401</td>
<td>2303</td>
<td>41</td>
</tr>
<tr>
<td>T. oshimai JL-2</td>
<td>2.07</td>
<td>pTHEOS01</td>
<td>271713</td>
<td>68.6</td>
<td>6</td>
<td>2</td>
<td></td>
<td>2188</td>
<td>2116</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTHEOS02</td>
<td>57223</td>
<td>68.4</td>
<td>1</td>
<td></td>
<td></td>
<td>72</td>
<td>69</td>
<td>2</td>
</tr>
<tr>
<td>Thermus sp. NMX2.A1</td>
<td>2.29</td>
<td></td>
<td></td>
<td>65.3</td>
<td>43</td>
<td>7</td>
<td>2</td>
<td>2469</td>
<td>2312</td>
<td>105</td>
</tr>
<tr>
<td>T. scotoductus SA-01</td>
<td>2.35</td>
<td>pTSC8</td>
<td>8383</td>
<td>65.9</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>T. scotoductus K12</td>
<td>2.48</td>
<td></td>
<td></td>
<td>65.5</td>
<td>47</td>
<td>1</td>
<td></td>
<td>2611</td>
<td>2418</td>
<td>139</td>
</tr>
<tr>
<td>T. scotoductus DSM 8553</td>
<td>2.07</td>
<td></td>
<td></td>
<td>64.8</td>
<td>47</td>
<td>8</td>
<td>1</td>
<td>2242</td>
<td>2156</td>
<td>30</td>
</tr>
<tr>
<td>T. tengchongensis YIM 77401</td>
<td>2.56</td>
<td></td>
<td></td>
<td>66.4</td>
<td>47</td>
<td>6</td>
<td>1</td>
<td>2729</td>
<td>2552</td>
<td>123</td>
</tr>
<tr>
<td>(T. yunnanensis)</td>
<td></td>
</tr>
<tr>
<td>T. thermophilus HB27</td>
<td>1.89</td>
<td>pTT27</td>
<td>232605</td>
<td>65.9</td>
<td>49</td>
<td>6</td>
<td>1</td>
<td>2027</td>
<td>1939</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTT27</td>
<td>256992</td>
<td>69.4</td>
<td>47</td>
<td>6</td>
<td></td>
<td>224</td>
<td>213</td>
<td>11</td>
</tr>
<tr>
<td>T. thermophilus HB8</td>
<td>1.85</td>
<td>pTT8</td>
<td>9322</td>
<td>69.5</td>
<td>47</td>
<td>6</td>
<td></td>
<td>1980</td>
<td>1908</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTT27</td>
<td>265886</td>
<td>69.5</td>
<td>47</td>
<td>6</td>
<td></td>
<td>251</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTT8</td>
<td>142731</td>
<td>69.5</td>
<td>47</td>
<td>6</td>
<td></td>
<td>160</td>
<td>155</td>
<td>4</td>
</tr>
<tr>
<td>T. thermophilus JL-18</td>
<td>1.9</td>
<td>pTTJL1801</td>
<td>265886</td>
<td>68.5</td>
<td></td>
<td></td>
<td></td>
<td>282</td>
<td>269</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTTJL1802</td>
<td>142731</td>
<td>68.3</td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td>155</td>
<td>4</td>
</tr>
<tr>
<td>T. thermophilus SG0.5JP17-16</td>
<td>1.86</td>
<td>pTHTHE1601</td>
<td>440026</td>
<td>67.4</td>
<td>48</td>
<td>6</td>
<td>2</td>
<td>445</td>
<td>429</td>
<td>16</td>
</tr>
<tr>
<td>T. thermophilus ATCC 33923</td>
<td>2.15</td>
<td></td>
<td></td>
<td>69.4</td>
<td>46</td>
<td>3</td>
<td>1</td>
<td>2337</td>
<td>2253</td>
<td>34</td>
</tr>
</tbody>
</table>

Note: number of rRNAs represent number of operons (5S-16S-23S)
Taxonomic position of Thermus sp. NMX2.A1. The resulting 1,389 clusters of orthologous proteins from the BLASTP search over available *Thermus* and *Meiothermus* genomes were used in MUSCLE alignments. The MUSCLE alignments were concatenated into a super-alignment of 377,241 amino acid residues and this alignment was used to construct a Neighbour-Joining phylogenetic tree in MEGA 6.0. The resulting phylogenetic tree (Figure 1) illustrates that *Thermus* sp. NMX2 A.1 clusters together with *T. scotoductus* SA-01 that was the closest species in terms of phylogeny. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized despite the fact that neither strain’s genome data was available at that point in time (Kieft et al. 1999; Balkwill et al. 2004).

![Image of phylogenetic tree]

Fig. 1. Neighbour-Joining tree designed based on the super-alignment of amino acid sequences of 1,389 orthologous genes in given bacterial genomes. The phylogenetic position of the strain *Thermus* sp. NMX2 A.1 is highlighted.

Comparative genome features. The current genome of *Thermus* sp. NMX2 A.1 comprises 132 contigs (Genbank accession number: ATNI00000000.1). MAUVE was
used to order the contigs of the *Thermus* sp. NMX2 A.1 using the chromosome of *T. scotoductus* SA-01 as the template (Figure 2).

Fig 2. Alignment of the contigs of *Thermus* NMX2 (B) against the *T. scotoductus* SA-01 (A) chromosome by Mauve 2.3.1. Red bars indicate genomic islands predicted in the SA01 genome by SWGIS.

There are many similarities between *T. scotoductus* SA-01 (A) and *Thermus* sp. NMX2 A.1 (B). The boundaries of the different coloured blocks indicate break points in the chromosomes while the vertical red lines indicate contig boundaries. A high degree of synteny is observed. Additionally, the red blocks above the depiction of the *T. scotoductus* SA-01 chromosome indicates genomic islands acquired by horizontal gene transfer (Gounder *et al.* 2011), which were absent in the contigs of the genome of *Thermus* sp. NMX2 A.1. Finally, *Thermus* sp. NMX2 A.1 also has genes (toward the extreme right of the *Thermus* sp. NMX2 A.1 depiction) which are not present within the *T. scotoductus* SA-01 chromosome. These may be either genomic islands acquired by *Thermus* sp. NMX2 A.1 or the genes that were lost by SA-01 after separation of the two lines from the common ancestor (Gounder *et al.* 2011).
The Bi-Directional BLAST (Bi-Di BLAST) results (Table S1) indicate the comparison of the forward and reverse ORFs of *Thermus* sp. NMX2 A.1 against the selected related strains. An inspection of Table S1 shows that *Thermus* sp. NMX2 A.1 is highly similar to *T. scotoductus* SA-01, as already illustrated by MAUVE and phylogenetic analysis (see Fig. 1 and 2).

A total of 1153 genes are shared by all the *Thermus* strains used in the analysis. *Thermus* sp. NMX2 A.1 contains unique genes not present in any of the other *Thermus* strains used in the analysis. All the genes (54 in total) which were unique to *Thermus* sp. NMX2 A.1 were annotated as hypothetical proteins, except for a Nitrate ABC transporter (TNMX_11560). Of special interest are 12 ORFs (TNMX_12205 to TNMX_RS11770) which form a gene cluster encoding for putative enzyme homologues of the Calvin-Benson-Bassham pathway (Fig. S2). Although these Calvin-Benson-Bassham genes were identified in other *Thermus* strains, it was surprisingly not observed in the closely related *T. scotoductus* SA-01.

Search for horizontally transferred genomic islands using SWGIS predicted only one genomic island of 7 hypothetical genes in the contig 123. DNA similarity search through Pre_GI revealed similar genes in the genomic island #2 in the genome of *Cellvibrio gilvus* ATCC 13127 (NC_015671). In the latter genome all these genes were annotated as heavy metal translocation proteins. Finding of only one genomic island was unexpected as 8.3% of the ORFs in *Thermus* sp. NMX2 A.1 had no homologues in the NCBI non-redundant database. However, it is known that *Thermus* organisms are prone
to exchange of genetic material by uptake of naked DNA molecules from the
environment, especially the genes of closely related bacteria of *Thermus/Meiothermus*
(Kumwenda et al. 2014). It is possible that the prediction methods did not detect
putative alien genes because the genome was only partially assembled or because of
amelioration if the genes were acquired a long time ago.

Genes involved in DNA uptake.

Some *Thermus* strains have been shown to possess natural competence and are able
to take up both linear and circular DNA with high efficiency (Friedrich et al. 2003;
Murugapiran et al. 2013). This was also demonstrated for *T. scotoductus* SA-01
(Gounder et al. 2011). *Thermus* sp. NMX2 A.1, just like *T. scotoductus* SA-01, contains
all the homologs of DNA transport genes, suggesting that *Thermus* sp. NMX2 A.1 is
naturally competent. These include the genes that encode homologues for: PilC
(TNMX_02375), PilD (TNMX_02985), PilF (TNMX_03090), PilM (TNMX_08400), PilN
(TNMX_08405), PilO (TNMX_08410), PilQ (TNMX_08420) and PilW (TNMX_08415).

Similarly to *T. scotoductus* SA-01, the NMX2.A1-strain does not contain the gene
encoding for PilA which is present in *T. thermophilus* HB27 (Gounder et al. 2011). In
addition, genes encoding for homologues of competence proteins ComEA
(TNMX_10095), ComEC (TNMX_10100), ComF (TNMX_06510), DprA (TNMX_09235)
and FimA (TNMX_04555) were also identified in *Thermus* sp. NMX2.A1. Bi-Di BLAST
analyses of 17 sequenced *Thermus* genomes also revealed that the majority of genes
involved with DNA uptake are present in all 17 genomes. Twelve of these DNA uptake
genes share at least a 75% protein identity across all the above-mentioned genomes.
When surveying the core proteome (75% protein identity cut off for all proteins) of the 17
strains, the proteins responsible for natural competence are present. This indicates that
natural competence in the *Thermus* genus is strongly conserved and will undoubtedly
afford these bacteria the opportunity to potentially expand their metabolic repertoire.

Genes involved in denitrification

Several studies have illustrated the partial denitrification pathways in different strains of
Thermus (Cava *et al*. 2008; Gounder *et al*. 2011; Murugapiran *et al*. 2013; Paraiso and
Hedlund 2013; Alvarez *et al*. 2014). In most *Thermus* strains, the genes required in the
first step of the denitrification process (reducing nitrate to nitrite) is encoded on a self-
transferable DNA element called the Nitrate respiration Conjugation Element (NCE).
The NCE encodes the complete nitrate respiratory apparatus comprising two hetero-
tetrameric enzymes: NrC and Nar as well as their regulatory components required for
their expression under anoxic conditions in the presence of nitrate (Cava and Berenguer
2006).

Like a large number of *Thermus* strains, *Thermus* sp. NMX2.A1 also displays a
truncated denitrification phenotype, terminating in the production of nitrous oxide instead
of dinitrogen. This is probably due to the absence of a periplasmic nitrous oxide
Bi-Di BLAST analyses revealed that *Thermus* sp. NMX2.A1, just as the very closely
related *T. scotoductus* SA-1 possesses a complete nar operon (narGHJIKT) with high
sequence identity between the two operons (> 90%). Seven other *Thermus* strains: *T.
igniterra* ATCC700962, both *T. oshimai* strains (DSM12092 and JL-2), *T. antranikianii*,
T. thermophilus YIM77409, *Thermus* sp 2.9 and two strains of *T. scotoductus
(DSM8553 and DSM21543) all have complete nar operons with similarly high sequence identities (all >75%) when compared to Thermus sp. NMX2.A1. All 17 strains’ genomes encode for the membrane-bound nitrate reductase NarG catalytic subunit homologue that is responsible for nitrate reduction but with varying sequence identities in comparison to the Thermus sp. NMX2.A.1 NarG [TMNX_11710] (Cava et al. 2008; Alvarez et al. 2014). All 17 strains also contain the NarC homologue - a cytochrome c containing nitrate reductase that allows the transfer of electrons from menaquinol to extracellular acceptors when intracellular nitrate becomes scarce (Cava et al. 2008; Alvarez et al. 2014).

Genes encoding homologues of nitrite respiration proteins NirD (large subunit) and NirJ appear to be present in all 17 sequenced genomes, including NMX2.A1, albeit differently dispersed amongst the strains. Strikingly, the small subunit of NirD is only found in Thermus sp. NMX2.A1 (TNMX_11570) and T. thermophilus SG0.5JP17-16 albeit with a low sequence identity of 32%. DELTA-BLAST using TNMX_11570 as the query indicated that the closest match (68% identity) was with a protein containing a Rossman fold NAD(P)\(^+\) binding site from Deinococcus deserti. Interestingly, the simultaneous presence of homologues of cytochrome cd\(_1\) nitrite reductase (NirS) and copper nitrite reductase (NirK) could only be found in T. oshimai JL-2 and DSM12092 and T. scotoductus SA-01 and Thermus sp. NMX2.A1. The reduction of nitrite in bacteria is performed by either NirK or NirS, but not both (Murugapiran et al. 2013).

Thus, the presence of both NirS and NirK homologues in the above-mentioned denitrificant Thermus strains is exceptional (Gounder et al. 2011; Alvarez et al. 2014).

As previously mentioned, Thermus sp. NMX2.A1 displayed an incomplete denitrification phenotype which terminated with the formation of nitrous oxide. The formation of nitrous
oxide from nitric oxide is facilitated by a heterotrimeric nitric oxide reductase (large subunit NorB and two small subunits NorC and NorH). NorB, NorC and NorH are present in *Thermus* sp. NMX2A.1 (TNMX_05775, TMNX_05780 and TNMX_05770) as well as *T. thermophilus* (strains JL-18, SG0.5JP17-16 and YIM77409), *Thermus* sp. 2.9, *T. scotoductus* SA-01 and both strains of *T. oshimai* (JL-2 and DSM12092).

The current genome data of sequenced *Thermus* strains highlight the variability of denitrification and that incomplete denitrification pathways appear to be common phenotypes in *Thermus*. Given the fact that *Thermus* is naturally competent, the variability in denitrification phenotype is indicative of a dispensable *Thermus* genome.

Genes involved with pigment metabolism

A common characteristic of several *Thermus* strains is their yellow pigmentation due to β-carotene biosynthesis. β-carotene and its hydroxylated products have been implicated in membrane stability and DNA protection from UV-radiation in *Thermus* (Yokoyama *et al.* 1995; Tian and Hua 2010). It is now known that the initial oxidized products of β-carotene in *Thermus* are produced with the aid of a cytochrome P450 monooxygenase (CYP450) (Momoi *et al.* 2006). Bi-Di BLAST analyses showed that 15 out of the 17 strains had a CYP450 homologue – only *T. scotoductus* strains SA-01 and DSM8553 (also known as strain SE-1) did not possess a CYP450 homologue. This result seems plausible given where these strains were isolated: the SA-01 strain was isolated in a mine 3.2 km below the surface (Kieft *et al.* 1999) and strain DSM8553 was isolated from tap water (Kristjánsson *et al.* 1994).
The native electron transport system for CYP175A1 in *T. thermophilus* HB27, namely a ferredoxin NAD(P)+ reductase and [3Fe-4S], [4Fe-4S] ferredoxin has been described and shown to effectively shuttle electrons to CYP175A1 to catalyze the hydroxylation of β-carotene (Mandai *et al.* 2009).

Thermus sp. NMX2A.1 possesses homologues of [3Fe-4S], [4Fe-4S] ferredoxin (TNMX_07470) and ferredoxin NAD(P)+ reductase (locus tag: TNMX_01055) proteins that display 99 % and 91 % identity respectively towards the known *T. thermophilus* HB27 electron transport proteins.

Based on DELTA-BLAST results, it would seem as if *Thermus* species typically harbour one cytochrome P450 monooxygenase gene. The genome of *Thermus* sp. NMX2A.1 revealed two cytochrome P450 monooxygenase gene homologues (TNMX_06310 and TNMX_12660, partially sequenced) which displayed 98 % and 63 % amino acid identity respectively when compared to CYP175A1. Based on the high amino acid sequence identity and the fact that the substrate binding sites (Yano *et al.* 2003) for both CYP175A1 and TNMX_06310 are identical, it is plausible to suggest that TNM_06310 also encodes a putative β-carotene hydroxylase.

Genes involved in carbon fixation

The Calvin–Benson–Bassham (CBB) cycle is a series of enzyme-catalyzed reactions responsible for the fixing of carbon. The limiting reaction in this cycle is carried out by the multimeric enzyme ribulose 1,5 bisphosphate carboxylase/oxygenase or ‘rubisco’ which catalyzes the first major step of carbon fixation in the CBB cycle: a process in which ribulose 1,5 bisphosphate reacts with atmospheric CO₂ and H₂O to form two
molecules of 3-phosphoglycerate (Badger and Price 2003; McNevin et al. 2007). The ability to perform this reaction is the defining step in identifying the presence of the CBB-cycle in most organisms. Multimeric rubisco (comprising large and small subunits) is found in plants and most autotrophic organisms, photosynthetic bacteria, algae and even in some archaea (Andersson 2008; Ichikawa et al. 2008).

Homologues of CBB cycle genes, including type 1 rubisco were identified in a gene cluster of *Thermus* sp. NMX2A.1. A search through the Pre_GI database for sequence similarity with known genomic islands revealed a similar syntenic operon in the genomic island #6 on the second chromosome of the genome of *Ralstonia eutropha* H16 (NC_008314). However in contrast to *Ralstonia*, DNA composition comparison showed that these genes were native for *Thermus* genomes and most likely this operon in NMX2A.1 emerged in result of recombination of genes with other *Thermus* organisms by DNA uptake (Kumwenda et al. 2014).

Bi-Di BLAST analyses indicated that, excluding rubisco, the putative CBB cycle enzyme homologues could be identified in all 17 *Thermus* strains except for one enzyme which is responsible for regenerating ribulose-1,5-bisphosphate from ribulose-5-phosphate namely phosphoribulokinase (PRK). Pathway Tools was also unable to annotate a PRK to complete the CBB-cycle (Fig. S1). A survey of several *Thermus* genomes revealed two adjacent ribulose-phosphate 3-epimerases in the CBB-gene cluster (Fig. S2) and further Pathway Tools analyses indicated that one of these is the enzyme responsible for the reaction 2.7.1.19 usually catalyzed by the PRK (Fig. S1). DELTA-BLAST using the smaller of the two epimerases from *Thermus* sp. NMX2.A1 (TNMX_12225) produced at least 500 positive results for ribulose-phosphate 3-epimerase from a wide...
variety of bacteria. When the larger epimerase (TNMX_12230) was subjected to the same DELTA BLAST, it showed that about 3% of the results were for ribulose-phosphate 3-epimerases, containing a conserved protein domain called nucleoside/nucleotide kinase (NK), which were almost exclusively confined to *Meiothermus*/*Thermus* strains. Strikingly, the remaining BLAST results were for PRKs from various bacteria and cyanobacteria. TNMX_12230 was also analysed in the BRENDA enzyme information system and was surprisingly identified as a PRK. BRENDA also identified THEOS_RS08585 and N686_RS06455, from *T. oshimai* JL-2 and *T. scotoductus* K12 respectively (Fig. S2), as PRKs. The results are indicative of a possible misannotation of these proteins as epimerases instead of putative PRKs. However, given the location of TNMX_12230 and other NK-region containing epimerases in the CBB-gene cluster and the BLAST results, it could be argued that these epimerases are possibly PRKs – a crucial enzyme for regenerating the sugar substrate for rubisco and thus completing the CBB-cycle.

Bi-Di BLAST (Table S1) indicated that the rubisco homologue is not ubiquitously found in all species of *Thermus*. For example, the rubisco homologue is not present in any *T. thermophilus* strain except for *T. thermophilus* YIM77409. As for the *T. scotoductus* strains: Bi-Di BLAST analyses revealed that both rubisco subunits are present in *T. scotoductus* DSM21543 but that *T. scotoductus* K12 only possesses the large rubisco subunit (Fig. S2). No homologues of the rubisco subunits were identified in *T. scotoductus* strain DSM8553 and SA-01. The absence of rubisco in the latter strain was surprising, given the very close similarity displayed between *Thermus* sp. NMX2.A1 and *T. scotoductus* SA-01 on protein level (Figure 1). Figure 3 shows the phylogenetic
analysis of the artificially concatenated amino acid sequence containing the two ribulose
bisphosphate carboxylase subunit and the fructose-1,6-bisphosphate, GlpX type
proteins.

Fig 3. Consensus phylogenetic tree of selected ribulose bisphosphate carboxylase small chain (EC 4.1.1.39),
ribulose bisphosphate carboxylase large chain (EC 4.1.1.39) and the fructose-1,6-bisphosphate, GlpX type (EC
3.1.3.11) from *Thermus* spp. rooted with an outlier.

These CBB-cycle proteins were selected for phylogenetic analyses due to their adjacent
gene topology and orientation on the selected *Thermus* genomes (Fig. S2). An
evolutionary relationship between the proteins from *Thermus* sp. NMX2.A1 and the 6
other *Thermus* proteins is evident. Interestingly, a close evolutionary relationship with
the proteins from *T. islandicus* DSM 21543 is observed with that from *Thermus* sp.

The *Thermus* strains depicted in Figure 3 were isolated from vastly different
geographical locations that range from Iceland, Portugal and the USA (Hudson et al.
1989; Williams *et al.* 1996; Chung *et al.* 2000; Bjornsdottir *et al.* 2009). Reviewing the
environments from which these *Thermus* strains were isolated could illuminate the
reasons for the presence of these carboxylases in a few Thermus strains. Table S2 and S3 contains some geographical and physico-chemical data of sites from which rubisco-containing Thermus strains were isolated. Although the hot spring water these various Thermus spp. reside in are from wide-spread geographical locations, there seems to be a common thread: appreciable amounts of HCO$_3^-$ and CO$_2$ coupled with water pH ranging from neutral to alkaline. The HCO$_3^-$ in these hot springs has its origin from various carbonates in rocks, sediments and soils that are heated from ultra-deep geothermal activity, biogenic CO$_2$ that dissolves in water or even CO$_2$ escaping from the soil (McGee et al. 2006). It would seem as if Thermus strains that harbour rubisco genes were isolated from hot springs that have readily available HCO$_3^-$. Further supporting this hypothesis is that T. thermophilus HB27, T. thermophilus HB8 and T. scotoductus SA-01 were all isolated from environments with very low levels of HCO$_3^-$ and do not contain the complete CBB cycle, having never had the need to acquire them, as was the case for Thermus sp. NMX2 A1. Further, T. scotoductus SA-01 was isolated from the deep subsurface, an environment where it was shown that the CBB cycle genes were almost completely absent and carbon metabolism occurs predominantly by the reductive acetyl-CoA pathway (Simkus et al. 2016).

Thermus strains containing the type I rubisco homologue were isolated from hot springs with temperatures that range from 50 – 88°C. These high temperatures decrease oxygenation levels in the water. Given rubisco’s binding preference for O$_2$ as opposed to CO$_2$, the less oxygenated water could mean that rubisco would be able to bind CO$_2$ more freely. This might explain why no homologues for carboxysome proteins were identified for any of the rubisco-containing Thermus strains (Table S2). Interestingly,
homologues for carbonic anhydrases were identified for most rubisco-containing
Thermus strains but for none of the rubisco-devoid *Thermus* strains (Table S2 and S3).

We speculate that the putative CBB-cycle could be active to fix carbon in rubisco-
containing *Thermus* strains in the presence of bi-carbonate, carbonic anhydrase and
low oxygenation. Since carbon fixation requires energy, a possible source of energy for
chemolithotrophic growth could be the oxidation of sulfur compounds (Gounder *et al.*
2011; Murugapiran *et al.* 2013; Table S1).

We conclude that rubisco-containing *Thermus* strains can probably fix carbon as
chemolithotrophes and that rubisco-devoid *Thermus* strains are likely obligate chemo-
heterotrophs.
ACKNOWLEDGEMENTS

We thank Prof T.L. Kieft for providing the *Thermus* NMX2 A1 strain for sequencing. This research was supported by the National Research Foundation and the Technology Innovation Agency, South Africa

REFERENCES

Bjørnsdóttir S.H., Petursdóttir S.K., Hreggvidsson G.O., Skirmisdóttir S., Hjörleifsdóttir S., et al., 2009 *Thermus islandicus* sp. nov., a mixotrophic

Cava F., and J. Berenguer, 2006 Biochemical and regulatory properties of a respiratory island encoded by a conjugative plasmid in the extreme thermophile *Thermus thermophilus*. *Biochem. Soc. Trans.* 34: 97-100

Paraiso J.J., and B.P. Hedlund, 2013 Are incomplete denitrification pathways a common trait in *Thermus* Species from geothermal springs in China? Poster presentation: Available at: http://digitalscholarship.unlv.edu/mcnair_posters/35

Preliminary characterization and crystal structure of a thermostable
cytochrome P450 from *Thermus thermophilus*. *J. Biol. Chem.* **278**: 608-616.

Thermozeaxanthins, new carotenoid-glycoside-esters from thermophilic