Title:
TRANSCRIPTOME PROFILING OF NASONIA VITRIPENNIS TESTIS REVEALS NOVEL TRANSCRIPTS EXPRESSED FROM THE SELFISH B CHROMOSOME, PATERNAL SEX RATIO

Authors:
Omar S. Akbari\(^1\)*, Igor Antoshechkin\(^1\), Bruce A. Hay\(^1\), Patrick M. Ferree\(^2\)*

Academic addresses:
1. Division of Biology, MC156-29, California Institute of Technology, Pasadena, CA 91125, USA
2. W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges 925 N. Mills Avenue, Claremont, CA 91711, USA

*Correspondence:
Patrick Ferree: pferree@kecksci.claremont.edu
Omar S. Akbari: oakbari@caltech.edu

SRA accession numbers:
WT: SRX325702
PSR: SRX325704

corresponding BioSamples:
WT: SRS462062
PSR: SRS462063

BioProject: SRP027543
Abstract
A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes in order to favor one sex or the other. The Paternal Sex Ratio (PSR) chromosome is a non-essential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, *Nasonia vitripennis*. In order to persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo - normally a female - into a male, thereby insuring transmission of the ‘selfish’ PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level we carried out transcriptional profiling of testis from wild type and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, while the others have very short open reading frames and no homology to known proteins, suggesting that they are long non-coding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the *N. vitripennis* genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.
Introduction

Over the past several years, the jewel wasp, *Nasonia vitripennis*, has gained attention as a rising insect model for genomic and developmental genetic studies. As a member of the order Hymenoptera, which includes all wasps, bees and ants, *N. vitripennis*, a wasp that is distributed worldwide, is a close sibling of three other North American wasp species within the *Nasonia* genus (Darling and Werren, 1990). All of these wasps are gregarious parasitoids, laying clutches of multiple progeny within the pupae of *Sarcophaga* blowflies (Darling and Werren, 1990). Because of their close relatedness, individuals of each *Nasonia* species can be interbred to produce viable F1 hybrid progeny with trait variations that are easily quantified and mapped to gene-level resolution (Gadau et al., 1999; Pultz and Leaf, 2003; Werren and Loehlin, 2009). Due in large part to the completion of the *N. vitripennis* genome (Werren et al., 2010b), which has facilitated a growing number of genetic and genomic tools, this species has become a preferred system for investigating the genetic basis of several hymenopteran-related traits. These include venom production, sex determination, and evolutionary development of characteristics such as wing length and axis patterning (de Graaf et al., 2010; Loehlin et al., 2010; Verhulst et al., 2010).

One of the most distinguishing hymenopteran characteristics is haplodiploid reproduction, which likely makes *N. vitripennis* and other members vulnerable to manipulation by microbial and genetic parasites. In haplodiploidy, females develop as diploids from fertilized eggs while males arise as haploids from unfertilized eggs. Meiosis in the male sex of hymenopterans occurs as a modified form of mitosis – likely, in part, because of a lack of homolog pairing partners required for bivalent formation at meiosis I (Whiting, 1968). A compelling question, therefore, is whether the meiotic genes that are active in females also function in the male germ line, and if so, in what ways. Because the earliest known signal for sex is an interaction between maternal and zygotic factors that are ultimately determined by the number of chromosome sets present in the egg (Verhulst et al., 2010), manipulation of chromosomes by parasites during early development can directly influence sex of the individual and have profound effects on population sex ratios. For example, the endocellular bacterium, *Arsenophonus nasoniae*, a natural symbiont of *N. vitripennis*, manipulates key aspects of the mitotic machinery required for haploid development from unfertilized eggs in order to kill male progeny (Ferree et al., 2008). This, in turn, biases host sex ratios toward female, an effect that is
thought to benefit the bacteria because they are transmitted solely from infected mother to offspring through the egg cytoplasm, and killing male individuals may provide more resources for the transmitting (female) sex through reduced competition between siblings (Hurst and Jiggins, 2000).

Sex ratios of hymenopteran insects also can be influenced by selfish genetic elements including supernumerary B chromosomes. The *N. vitripennis* genome normally contains five chromosomes that are similar in size. However, some individuals also contain a supernumerary (B) chromosome known as Paternal Sex Ratio (PSR). Structurally, PSR is a small, centric fragment that may have arisen from a normal chromosome through an ancient genome fragmentation event (Werren and Stouthamer, 2003). Unlike sex ratio-distorting bacteria, which are primarily maternally transmitted, PSR is transmitted paternally through the sperm (Nur et al., 1988). Previous studies have demonstrated that PSR is non-essential for the fitness of *N. vitripennis* (Reed and Werren, 1995; Werren et al., 1987). In order to persist, PSR modifies the paternal chromatin in some unknown way so that it is completely destroyed during the first mitotic division of the fertilized embryo. Specifically, during prophase the paternal chromatin fails to resolve into distinct chromosomes and becomes abnormally hyper-condensed, while the maternal chromosomes resolve normally (Reed and Werren, 1995; Werren et al., 1987). In insects, the two parental chromosome sets remain separated by a layer of incompletely degraded nuclear envelope during the first division (Callaini and Riparbelli, 1996). This feature allows the maternal chromosomes to segregate normally into daughter nuclei, while the modified paternal chromatin mass (PCM) remains at the metaphase plate and is lost during subsequent cleavage divisions (Reed and Werren, 1995). Due to the haplodiploid nature of *N. vitripennis*, these fertilized embryos, which should become diploid females, are converted into PSR-transmitting haploid males. PSR somehow spares itself this hyper-condensed fate despite its close association with the sperm nuclear material, and it joins the maternal set during the first mitosis in order to be transmitted (Swim et al., 2012). Because of this severe effect on the paternal half of the genome, PSR is considered to be the most extreme genetic element known in nature (Werren and Stouthamer, 2003). Additionally, the effect of PSR is a striking example of intra-genomic conflict, a condition in which an individual part of the genome achieves enhanced transmission at the expense of the genome as a whole.
A fundamental question is how PSR modifies the paternal chromatin at the molecular level. Several important clues were provided by a recent study, which showed that in the presence of PSR, histone H3 of the paternal set abnormally retains its phosphorylated state after exit from the first embryonic mitosis, and persists in this phosphorylated state throughout multiple cell cycles before the chromatin becomes lost (Swim et al., 2012). Additionally, the Condensin complex, which functions in eukaryotes to resolve chromatin into distinct chromosomes, becomes overly concentrated on the paternal chromatin and persists in a manner that mirrors the abnormal paternal histone H3 pattern (Swim et al., 2012). However, the paternal set appears to replicate properly, and does not become abnormally phosphorylated before entry into the first mitosis (Swim et al., 2012). These latter observations are consistent with the idea that defective PH3 and Condensin complex retention occur secondarily due to some other chromatin modification that is established at an earlier developmental time (Swim et al., 2012).

The close association of PSR with the sperm nuclear material has led to speculation that the initial PSR-induced modification occurs at some point during spermatogenesis (Werren and Stouthamer, 2003). Unlike Drosophila males, which produce sperm continually as adults, Nasonia males produce the majority of their sperm during the pupal stage (Whiting, 1968). Division of stem cells at the anterior region of the testis produces spermatogonia, which divide mitotically with incomplete cytokinesis to form cysts of pre-meiotic spermatocytes. The cells within all of these cysts progress through meiosis synchronously to produce haploid spermatids (Swim et al., 2012). These cells and their nuclei become highly elongated before becoming individualized into mature sperm. During spermatid nuclear elongation in most animals, the paternal DNA is stripped of its conventional histones and it is repackaged with special histone-like proteins known as protamines. In some organisms, a small fraction of histones H3 and H4 remain within the sperm chromatin (Dorus et al., 2006; Gatewood et al., 1987; Govin et al., 2007). These histones can retain unique post-transcriptional modifications, such as methylation or acetylation of specific Lysine residues, which are established during earlier stages of spermatogenesis. It recently was hypothesized that PSR could induce paternal genome loss by altering histone modification in the developing N. vitripennis spermatids (Swim et al., 2012). While PSR-induced histone modification is a plausable hypothesis that remains to be proven, there are multiple alternative models that could explain PSR’s mode of action. For example, PSR could instead alter other chromatin
related processes, such as DNA methylation, which is known to occur at some loci in *N. vitripennis* (Park et al., 2011). Alternatively, transposable elements, which normally are silenced by small RNA pathways in the male and female germ lines, could be de-repressed by the presence of PSR in order to disrupt the chromatin state of the paternal set (Michalak, 2009).

An important step in testing the above models is to assess whether PSR expresses any genes that may facilitate paternal chromatin modification. The PSR chromosome is believed to be largely heterochromatic because of its characteristic C-banding pattern (Reed, 1993). Consistent with this idea, previous findings have uncovered several heterochromatin-associated sequences on the PSR chromosome; these include one retrotransposable element and several satellite DNA repeats (Eickbush et al., 1992; McAllister and Werren, 1997). In most cases, heterochromatin contains few or no genes (Grewal and Moazed, 2003). Furthermore, genes that become located near centric heterochromatin through chromosomal rearrangements undergo strong transcriptional silencing (Wallrath and Elgin, 1995). However, in a number of different eukaryotes some non-coding repetitive sequences located in heterochromatin, including centromere and telomere repeats, are transcribed (Kanellopoulou et al., 2005; Schoeftner and Blasco, 2008; Volpe et al., 2002). These heterochromatic sequences, as well as some non-coding RNAs expressed from euchromatic loci, are known to play important roles in sub-nuclear organization, gene expression, and genome stability (Clemson et al., 2009; Meller and Rattner, 2002; Plath et al., 2002; Sheardown et al., 1997). Additionally, a handful of single-copy protein coding genes have been found on the heterochromatic Y and fourth chromosomes in *Drosophila melanogaster* (Carvalho et al., 2001; Riddle and Elgin, 2006). Thus, it is conceivable that PSR, although largely heterochromatic, expresses protein-coding genes in addition to non-coding RNAs in the wasp testis; these could facilitate modification of the paternal chromatin. Currently, no studies have directly demonstrated transcriptional activity from the PSR chromosome, and very little is known in general about genes that are carried on and expressed from supernumerary B chromosomes, or how the presence of PSR affects expression of genes from other chromosomes. It is possible that PSR's ability to disrupt male genome transmission results from mis-expression of loci located on the normal wasp chromosomes during spermatogenesis. Strong candidates for mis-expression include genes encoding chromatin-associated factors and small RNA pathway components,
which play important roles in chromatin structure and genome stability (Deshpande et al., 2005; Megosh et al., 2006).

To investigate how PSR functions we have performed transcriptional profiling of

N. vitripennis testes with and without the PSR chromosome. To our knowledge, this analysis represents the first transcriptome-based study of testis conducted in a hymenopteran insect. Our experiments demonstrate that PSR does not cause mis-expression of annotated wasp chromatin-related genes, small RNA pathway genes, or TEs. However, we report the discovery of nine transcripts that are expressed uniquely from PSR. Interestingly, five of these transcripts encode putative proteins, while the others have poor protein-coding potential and may be long non-coding RNAs (lncRNAs). We also use these data to further annotate the wasp transcriptome and report 15.71 MB of novel transcribed regions, thus increasing the current annotation of the *N. vitripennis* genome by 53.4%. Finally, to our surprise, we found that all nine homologs of Drosophila meiosis genes that are identifiable in the wasp genome were expressed in the wasp testis, despite the lack of conventional meiosis in this sex.
Results

Identification of newly transcribed regions through analysis of the *N. vitripennis* testis transcriptome

In order to explore the RNA expression profile of the *N. vitripennis* testis, we isolated and analyzed poly(A)+ RNAs from single samples of pooled, whole testes of both wild type *AsympC* and PSR-carrying *AsymC* male wasps. From a total of 80,020,380 reads produced from both conditions, 74,859,927 (93.55%) mapped to the wasp genome (Supplementary Table 1). Using these data, we first explored the wasp genome for non-annotated transcribed features in order to generate a more complete transcriptome. The transcriptomes from wild type and PSR-containing testes were used to produce a combined gene set, which included 18,924 known transcripts and 14,857 new isoforms of previously annotated *N. vitripennis* genes. These new isoforms originate from 40.3% of the previously annotated genes, and added a total of 150,189 novel exons (Supplementary GTF file 1). We also discovered 2,293 novel transcribed regions (NTRs) that do not match known annotations. These NTRs were produced from 1,979 loci with a total of 4,450 novel exons that do not overlap annotated *N. vitripennis* transcription units (Supplementary GTF file 2, Supplementary Table 2). The new transcriptome assembly confirmed 52,516 of 84,899 exon junctions derived from *N. vitripennis* transcripts (61.9%) and defined 64,743 novel exon junctions, significantly increasing the splicing complexity of the *N. vitripennis* transcriptome. A total of 63,013 (97.3%) newly discovered junctions belong to new isoforms of *N. vitripennis* genes, and 1,730 (2.7%) originate from NTR transcripts. To put these findings into perspective, the previous *N. vitripennis* transcriptome covers 29.43 MB of genomic sequence (9.98% of the assembled genome). The new isoforms of previously annotated genes from this analysis increase the genomic sequence coverage to 42.94 MB, and the NTRs add another 2.20 MB. Thus, the transcripts identified from our poly(A)+ RNA samples result in an increase of transcribed sequence from 29.43 MB to 45.14 MB (a 53.4% increase), resulting in a total of 15.3% of the genome being transcribed into poly(A)+ RNAs in the *N. vitripennis* testis. This level is similar to that found in the *D. melanogaster* testis (Adams et al., 2000).

In order to attain a better understanding of what the identified NTRs may encode, we conducted homology searches against the NCBI non-redundant protein database.
and identified significant hits for 770 (33.58%) NTRs (Supplementary Table 3). For 404 NTRs (52.46% of hit-producing NTRs), the best blast hits were against *N. vitripennis* proteins, suggesting that they may represent paralogs of previously annotated *N. vitripennis* genes. In total, 66.41% (1,523) of NTRs discovered had no significant blast hits, suggesting these may be novel genes specific to *N. vitripennis* (Supplementary Table 4, Supplementary GTF File 3). Only four of the 1,523 NTRs with no blast hits have potential ORFs longer than 200 amino acids (Supplementary Table 5). All four of these potential ORFs contain a potential coiled-coiled domain, but no other identifiable functional domains. It is possible that most of the NTRs with no blast hits are non-coding RNAs, though we cannot rule out the possibility that some encode small proteins. To create a subset of relatively highly expressed non-coding NTRs, we identified the NTRs that are expressed with at least 10 FPKM (fragments per kilobase of exon per million fragments mapped) in at least one of the two samples, are at minimum 200 base pairs long, and have no significant blast hits or ORFs longer than 200 amino acids. These criteria produced a total of 202 highly expressed, potentially non-coding transcripts (Supplementary Table 6, Supplementary GTF File 4).

Identification of PSR-expressed transcripts

A primary goal of this study was to identify any transcripts that are specifically expressed from the PSR chromosome in the testis. To identify PSR specific transcripts we stringently excluded all transcripts that had any matches to wild type transcripts. In total, we discovered nine expressed transcripts (10-1,163 RPM) that were exclusively identified in the PSR sample (see methods for details). All of the remaining PSR specific transcripts, which had RPMs of less than 10 and less than 50 map-able reads, were excluded based on their low expression. Additionally, there were 343 transcripts that had only one wild type read that mapped to them, but these transcripts also had very few PSR reads that mapped to them as well. For example, the highest number of PSR reads for those 343 transcripts was 14, compared to 7,952 reads for Locus_4317 (the highest PSR-specific transcript). Therefore, the transcripts that had any wild type reads mapping to them and also very few PSR reads were excluded from our analyses. We chose to focus our study on highly expressed PSR-specific transcripts because they are much stronger candidates for paternal genome alteration than low expressed transcripts. Additionally, as expected we found no transcripts expressed above background levels.
(i.e., more than ten map-able reads or greater than 2RPMs) that are specific to the wild type sample (i.e., not expressed in the PSR+ sample).

The lengths of these PSR-specific transcripts ranged from 575bp to 1,483bp, with an average length of 948bp. None of these transcripts were conserved at the nucleotide level to any sequences in the nucleotide collection "nr/nt" NCBI blastn database. However, all of these transcripts contained putative ORFs but many of them were small; the longest predicted ORF length was 245aa (Supplementary Table 7). To explore what these transcripts could potentially encode, we blasted translated nucleotide sequences against the non-redundant protein database (blastx). Four of the nine transcripts had significant blastx hits (E-value below 0.01) (Supplementary Table 7). Of these transcripts, three (Loci 5885, 2141, and 9281) had top hits to annotated hypothetical N. vitripennis proteins. Two had limited homology to either Nasonia hypothetical protein LOC100680517 (Query coverage 24%, E-value 6e-07, chromosomal location unknown) or to Nasonia hypothetical protein LOC100678674, an F-Box domain-containing gene (Query coverage 55%, E-value 2e-15, located on chromosome 4). These PSR-specific transcripts are likely paralogs of these N. vitripennis genes. The third transcript (Locus 2141) had extensive homology to two genes including a tnp2 family transposase-like gene, Nasonia hypothetical protein LOC100678713 (Query coverage 94%, E-value 2e-76, chromosomal location unknown), and predicted hypothetical protein LOC100678738 (Query coverage 99%, E-value 2e-70, located on chromosome 2), and is, therefore, a likely paralog of these genes. The fact that these N. vitripennis paralogs for two of the PSR-specific genes are located on different chromosomes argues that the PSR regions producing these transcripts likely do not originate from a single chromosomal region. Additionally, one transcript (Locus 4317) has some homology to a hypothetical protein from Caenorhabditis briggsae (Query coverage 27%, E-value 7e-05). Of the transcripts that did not have any significant blastx hits (5/10), three (Loci 1539, 4656, and 8628) were found to have poor coding potential (Methods), primarily due to very short predicted ORFs and a lack of extensive homology to known genes (Kong et al., 2007). Based on these characteristics, these sequences may belong to the long (>-200bp) class of non-coding RNAs. The two final sequences (Loci 5643 and 5794) have no homology to known genes, but each contains a putative conserved protein domain (RRM-SF domain accession number cd00590 for Locus 5643 and Coatomer-E domain accession number pfam04733 for Locus 5794) within its predicted ORF.
In order to determine which chromosome the PSR-specific transcripts arise from, we mapped the corresponding chromosomal locations of the three most abundant transcripts (Loci 4317, 5885, and 1539) by using DNA fluorescence in situ hybridization (see Methods) (Supplementary Table 7). These transcripts included the two sequences with homology to either the *C. briggsae* hypothetical protein or the *N. vitripennis* hypothetical protein (LOC100680517), and one putative lncRNA (LOC1539). Each of these sequences localized to a single region on the PSR chromosome, and they did not hybridize to any of the normal wasp chromosomes (Figure 2 A-C). We also mapped two potentially non-coding transcripts that were highly expressed in both wild type and PSR-containing testis and, therefore, are likely to be derived from the normal chromosomes. Each of these sequences mapped to single regions on different wasp chromosomes but not to PSR (Figure 2 D,E). These patterns confirm the results of our transcriptional (RNA-Seq) analyses, demonstrating the specificity of these sequences to either PSR or the normal chromosomes.

Expression of chromatin-associated genes in the presence of PSR

Another goal of this study was to identify any genes in the normal wasp genome that are mis-expressed and to assess if TEs become transcriptionally hyperactive, in the presence of PSR. First, using our comprehensive testis transcriptome, we calculated the expression levels for all previously annotated genes and our NTRs, and observed a strong correlation between the wild type and PSR-containing testis samples (Pearson Correlation Coefficient 0.962) (Figure 1, Supplementary Tables 8 and 9). Thus, expression of the vast majority of wasp genes in the testis is not affected by PSR. In order to further investigate the genes that were mis-expressed in the presence of PSR, we performed an over/under-representation analysis, which revealed several patterns. First, we found a total of 199 previously annotated genes and NTRs that are overrepresented in the PSR testis and 345 previously annotated genes and NTRs that are underrepresented in the PSR testes when compared to wild type testes (p<0.05) (Supplementary Tables 10 and 11). A gene ontology analysis revealed that the majority of over-expressed genes are involved in cellular carbohydrate biosynthesis, protein polymerization, and cellular protein complex assembly. The majority of genes that were under-represented in the PSR testes are involved in chitin metabolism, aminoglycan
metabolism, and polysaccharide metabolism. There were also smaller numbers of genes in other gene ontology (GO) categories that were also up- or down-regulated in PSR testes and these may also be important for the role PSR plays (Supplementary Tables 12 and 13).

Second, we found no evidence for mis-expression of homologs of *D. melanogaster* genes that are involved in different aspects of chromatin structure and stability in the presence of PSR. These genes include putative histone acetyltransferases (n=13), histone methyltransferases (n=28), histone deacetylases (n=6), histone demethylases (n=16), DNA methylase 1 (Dnmt1), and the heterochromatin protein 1 (HP1) (Table 14). Additionally, we found normal expression levels for genes belonging to the small interfering (si-) RNA, micro- (mi-) RNA, and Piwi-interacting (pi-) RNA pathways (Table 14). Finally, we found no evidence of TE over-expression in the PSR-containing testis. Surprisingly, the number of reads that mapped to annotated TEs, low complexity sequences, simple repeats and satellites was extremely low for both samples at (0.0022% for PSR and 0.0029% for wild type, of the total reads produced) suggesting that transcription of these genes is negligible in the testes (Supplementary Table 15). We did detect very few reads originating from the PSR specific NAsonia Transposable Element (NATE) only in the PSR sample and not the wild type sample, indicating that this TE is transcribed from the PSR chromosome (McAllister, 1995; McAllister et al., 2004). Finally, protamine-encoding genes remain to be identified in *N. vitripennis*; therefore we were unable to determine if the expression levels of these genes are altered by PSR.

Expression of meiosis-related genes in the *N. vitripennis* testis

In *N. vitripennis*, male meiosis occurs as a modified form of mitosis (Whiting, 1968), which is why we expected to detect few if any meiosis-related genes in the testis. To our surprise, we found that of the nine putative orthologs of known *D. melanogaster* meiotic genes that were identifiable in the wasp genome, all nine were expressed at high levels in the wasp testis (Supplementary Table 16). At least one of these genes, *meics* (*meiotic central spindle*) may have a meiosis-specific role in *D. melanogaster* (Panzera et al., 2001), whereas many of the other genes are known to have additional roles in mitosis or other processes unrelated to meiosis within spermatogenesis.
Discussion

In this study we performed transcriptional profiling of the *N. vitripennis* testis to begin to understand how the selfish B chromosome, PSR, modifies the paternal nucleus for destruction. A primary goal was to identify any coding or non-coding genes that are expressed from PSR and that may play a role in this phenomenon (discussed below). However, an additional outcome was the discovery of 15.71 Mbp of NTRs, which raises the known amount of transcribed regions in the *N. vitripennis* genome by 53.0%. This dataset provides the first complete account of global gene expression in the *N. vitripennis* testis and can be used as a resource for future studies aimed at investigating developmental processes tied to the male germ line in hymenopterans.

One interesting pattern borne out of this work is our finding that all nine orthologs of Drosophila meiosis-related genes present in the *N. vitripennis* genome are expressed in the male germ line of this species. This finding is contrary to our prediction that meiosis genes would not be expressed in the wasp testes due to the fact that meiosis in the male sex is a modified mitosis (Whiting, 1968). In flies, eight of these genes are known to function in additional non-meiotic processes. For example, *mei-w68* is involved in initiation of meiotic recombination but also operates in S phase and mitosis similarly to Topoisomerase 2 (Top2), which catenates and decatenates DNA (McKim and Hayashi-Hagihara, 1998). Another gene, *meiosis I arrest (mia)*, facilitates the G2/M transition of meiosis I and also the onset of spermatid differentiation (Lin et al., 1996; White-Cooper et al., 1998). Thus, it is possible that these genes only perform their non-meiotic functions in the wasp male germ line. In contrast, *meiotic central spindle (meics)* may be restricted to meiosis-related functions in flies (Panzera et al., 2001). What functions might the ortholog of this or other meiosis-specific genes serve in the wasp testis? Haplodiploidy is believed to have evolved from a diploid state with traditional meiosis in the male sex (Bull, 1981). It is intriguing to speculate that *meics* and perhaps others may have evolved to perform new functions in the wasp testis. These new functions, in turn,
may have helped to facilitate the transition from a normal meiosis in diploids involving two homologous chromosome sets to a mitosis-like meiosis in hymenopterans.

PSR expresses transcripts with coding and non-coding potential in the wasp testis

Although the vast majority of B chromosomes are largely heterochromatic (Jones, 1995; Jones et al., 2008), little is known about the specific sequence elements that they contain, and even less is known about their potential for gene expression. Our analyses have led to the identification of nine transcripts that are uniquely expressed from the PSR chromosome in the wasp testis. Four have strong potential to code for proteins. Three of these putative proteins (Loci 5885, 2141, and 9281) are at least partly homologous to hypothetical or uncharacterized *N. vitripennis* proteins, while the other (Locus 4317) partially matches a hypothetical protein found in *C. briggsae*. Notably, one transcript (Locus 2141) that is homologous to a *N. vitripennis* sequence appears to encode a transposase-like protein. We did detect low PSR-exclusive expression (i.e., no expression in the wild type condition) from the previously identified retrotransposable element, NATE, which is located on the PSR chromosome (McAllister, 1995; McAllister and Werren, 1997), suggesting that PSR is actively transcribing TEs and that these may play a role in its mechanism. However, the lack of additional TE-associated transcripts uniquely present in the PSR-containing testis indicates that the population of expressed TEs carried on the PSR chromosome is very similar to that present within the normal wasp genome. In general, the presence of PSR has very little effect on TE expression in the testis.

Of the five remaining PSR-specific transcripts that we detected, three (Loci 1539, 4656 and 8628) have poor coding potential while two (Loci 5643 and 5794) have low but significant coding potential. Thus, there is a strong possibility that at least some of these sequences are lncRNAs. Interestingly, we mapped the three most highly abundant PSR-specific transcripts, which includes one putative lncRNA (Locus 1539) and two transcripts with strong coding potential (Loci 4317 and 5885), to the sub-chromosomal level by using DNA FISH, and in doing so, we found that each of these three transcripts correspond to a single, unique region on the PSR chromosome. This finding has several implications. First, it is possible that either these transcripts are expressed directly from
the mapped loci or they are instead expressed from small euchromatic regions that are distinct from the mapped loci and located within the larger heterochromatic context of the PSR chromosome. Either scenario is possible, given that (i) transcripts are known to be expressed directly from heterochromatic sequences such as telomere repeats (Schoeftner and Blasco, 2008) and (ii) a handful of genes are located within and expressed from heterochromatic chromosomal regions, including the pericentromeric region of the X (Tautz et al., 1988) as well as the largely heterochromatic Y and fourth chromosomes in *D. melanogaster* (Koerich et al., 2008; Riddle and Elgin, 2006; Vibranovski et al., 2008). A second interesting implication pertains specifically to the transcripts with high protein-coding potential that were mapped to PSR. Future studies will be required to directly test which, if any of these transcripts are translated in the testis. However, if they are, indeed, translated and also are transcribed from high-copy heterochromatic sequences, then they would represent a rare class of complex repeats that encode proteins. One other complex repeat, Stellate, is located in multiple, tandemly repeated copies on the distal end of the X pericentromeric heterochromatin of the *D. melanogaster* X chromosome (Palumbo et al., 1994; Shevelyov, 1992; Tritto et al., 2003). Normally in the testis, this locus is transcriptionally silenced through the piRNA pathway by a Y-linked locus, Suppressor of Stellate, or Su(Ste) (Nishida et al., 2007). In the absence of Su(Ste), the Stellate repeats produce a transcript that encodes a Casein Kinase-like protein. Expression of this protein leads to formation of crystalline aggregates in the testis and male sterility (Bozzetti et al., 1995).

Could any of the PSR-expressed transcripts facilitate modification of the paternal half of the wasp genome, and if so, how? None of the predicted ORFs of these transcripts encodes proteins with specific motifs or overall topologies that strongly suggest ties to chromatin dynamics. However, it is reasonable to imagine that one or more of these proteins, if produced, may differentially associate with the paternal chromatin in some deleterious manner. Large differences in chromatin composition, such as high amounts of euchromatin in the normal wasp genome, may attract such proteins more than the heterochromatic PSR chromosome, resulting ultimately in hyper-condensation of the paternal set and concomitant exemption of PSR from this fate.

A second, intriguing possibility is that PSR-expressed IncRNAs may facilitate modification of the paternal set. This idea stems from the fact that a number of IncRNAs,
including roX1 and roX2 in D. melanogaster and Xist in mouse and human, are known to facilitate chromatin-based processes. In flies, both roX1 and roX2 are expressed from a locus on the X chromosome (Amrein and Axel, 1997). These IncRNAs are integral components of the dosage compensation complex (DCC), which forms only in the male sex and localizes broadly across the euchromatic part of the single X chromosome (Franke and Baker, 1999). The roX RNAs may serve to guide the DCC to the X, where it can facilitate remodeling of the X euchromatin into a state that is more accessible for transcriptional machinery (Gu et al., 1998; Hilfiker et al., 1997; Lucchesi et al., 2005). In mammals, Xist, which also is X-linked, becomes expressed from one of the two X chromosomes at random during early development (Brown et al., 1991; Kay et al., 1993; Marahrens et al., 1998; Penny et al., 1996). In conjunction with other IncRNAs, Xist acts in cis to transform the X chromosome into a transcriptionally silent, heterochromatin state (Chaumeil et al., 2006; Heard, 2005; Navarro et al., 2005; Sun et al., 2006). Therefore, in one scenario, PSR-expressed transcripts could operate in trans, associating with paternal euchromatin and either blocking normal chromatin enzyme activities or inducing abnormal enrichment of chromatin factors. Alternatively, PSR-expressed IncRNAs may associate specifically with the PSR chromosome as a way of protecting it from a second activity that acts to modify the paternal chromatin. Determining the localization patterns of these transcripts at the sub-nuclear level in the testis and early embryo will be important for testing these and other ideas.

Conclusions

Our studies have revealed that PSR expresses both potentially coding and non-coding transcripts, despite its largely heterochromatic composition. We propose that these transcripts could play a role in the ability of PSR to destroy the paternal half of the genome and/or protect the PSR chromosome, in order to facilitate its transmission to males. That said, other transcription-dependent and independent models exist to explain selfish PSR behavior (Werren and Stouthamer, 2003); our study is a first step toward investigating the possibilities at a genomic level. The analysis of poly(A)+ transcripts presented here will complement future experiments that explore non-adenylated transcripts and small RNAs in the wasp testis to provide a more complete transcriptional profile of gene expression from PSR and wild type chromosomes.
Figures

Figure 1. Scatter plot of PSR vs. wild type testes with coefficient of determination. Scatter plot of FPKM values for genes and NTRs comparing expression values for PSR (Y-axis) and WT (X-axis) testes. The coefficient of determination (R^2) is displayed in top left.

Figure 2. Chromosomal locations of PSR-specific and normal chromosome transcripts obtained from RNA-seq by using DNA fluorescence in situ hybridization. (A-C) Three probes, each corresponding one of three transcripts (names, respectively) present only in the PSR+ testis, localize specifically to the PSR chromosome (red regions, indicated by red arrows). (D, E) Probes corresponding to two different transcripts present in both control and PSR+ testes highlight single regions on a single normal chromosome.

Figure 3. Model for initial alteration of the paternal genome by PSR as suggested by testis transcriptome profiling. PSR-specific transcripts are expressed during spermatogenesis. These transcripts or their encoded proteins facilitate an unknown modification of the paternal chromatin that disrupts its normal behavior during the first mitotic division of the embryo. PSR, however, spares itself this fate and is transmitted with the viable maternal set. The paternal set is lost, converting what should become a diploid female embryo into a haploid male, the PSR-transmitting sex.

Supplemental Files

Supplementary GTF File 1. Novel isoforms of Annotated Genes GTF file

Supplementary GTF File 4. Expressed Non-coding NTRs GTF file.

Supplemental Tables

Supplementary Table 1. Mapping Statistics

Mapping statistics for both PSR+ and WT testes samples indicating the total reads which map to junctions, exons, to multiple locations, uniquely and total locations mapped.
Supplementary Table 2. Novel Transcribed regions (NTR) fasta file.

Supplementary Table 3. Blastx results for NTRs.

Supplementary Table 4. NTRs with no significant blast hits fasta file.

Supplementary Table 5. NTRs with Coding potential fasta file.

Supplementary Table 6. Non-coding Novel Transcribed regions (NTR) fasta file.

Supplementary Table 7. Transcripts specific to PSR.

A list of transcripts specific to PSR including relative expression levels in reads per million (RPM).

Supplementary Table 8. Gene Expression

Gene expression profile for Annotated Genes and NTR's.

20,813 total - 18,833 Annotated Genes and 1,980-NTRs.

Supplementary Table 9. Transcript Expression

Gene expression profile for Annotated transcripts and NTR transcripts.

21,216 total -18,923- Annotated transcripts and 2293 NTRs.

Supplementary Table 10. PSR Overrepresented genes and NTRs.

A list of 199 genes and NTRs significantly overrepresented in the PSR testes compared to the wildtype testes. Terminology: gene_id: gene ID; locus: Chromosomal start-stop positions; WT FPKM: FPKM from the WT sample; PSR FPKM: FPKM from the PSR sample; log2(fold change): Fold change of the log(2) FPKM data. Test stat: The value of the test statistic used to compute significance of the observed change in FPKM, p value: The uncorrected p-value of the test statistic, q value: The FDR-adjusted p-value of the test statistic.

Supplementary Table 11. PSR Underrepresented genes and NTRs.

A list of 345 genes and NTRs significantly overrepresented in the WT testes compared to the PSR testes. For terminology see supplementary table 10 legend.

Supplementary Table 12. PSR Ontology Overrepresentation analysis.

A list of the genes overrepresented in the PSR testes compared to the wildtype testes. Terminology: GOBPID: Gene Ontology Biological Process Identification number; GOMFID: Gene Ontology Molecular Function Identification number; Pvalue: p value given by the hypergeometric test (p<0.01); OddsRatio: of odds that a GO term is enriched in the selected category; ExpCount: expected number of transcripts found associated with the GO term for enrichment; Count: real number of transcripts found associated with the GO term; Size: population size of transcripts found associated with...
the GO term within the analysis; Term: Gene Ontology Biological Process description term; Inf: Infinite value.

Supplementary Table 13. WT Ontology Overrepresentation analysis.
A list of the genes overrepresented in the WT testes compared to the PSR testes. For terminology see legend for Supplementary Table 12 legend above.

Supplementary Table 14. Expression Patterns for chromatin remodeling enzymes and Small RNA processing genes.
A list of expression patterns for Putative histone Deacetylases, Putative histone Demethylases, Putative Acetyltransferases, DNA methyltransferases and small RNA processing and piRNA related genes for both PSR and WT conditions.

Supplementary Table 15. Transposable elements, simple repeats, satellites, and low complexity sequence expression profiles.

Supplementary Table 16. Conserved meiosis related genes expression.
A list of expression patterns of conserved meiosis related genes.

Methods

Total RNA Isolation
Total RNA was extracted using the Ambion mirVana mRNA isolation kit (Ambion/Applied Biosystems, Austin, TX). Samples were then flash frozen. The male testes were collected from 3-day-old pupae in the yellow body-red eye stage. Following extraction from testes, RNA was treated with Ambion Turbo DNase (Ambion/Applied Biosystems, Austin, TX). The quality of RNA was assessed using the Bioanalyzer 2100 (Aglient Technologies, Santa Clara, CA) and the NanoDrop 1000 UV-VIS spectrophotometer (NanoDrop Technologies/Thermo Scientific, Wilmington, DE). RNA was then prepared for sequencing using the Illumina mRNA-Seq Sample Preparation Kit (Illumina San Diego, CA) and the Illumina HiSeq 2000 sequencer was used for sequencing paired-end–sequenced libraries (2 x 100bp). These samples were multiplexed and run on a single lane of an Illumina flowcell. For each condition we sequenced a single sample of 80-100 pooled testes collected from multiple males.

Poly(A)+ Read Alignment and Quantification
PolyA transcriptome reads (non-trimmed) for both PSR+ (41,086,691 reads) and WT (34,468,925 reads) testes samples were processed and aligned to a reference index
generated for the *Nasonia vitripennis* genome Nvit_2.0 (obtained from www.ncbi.nlm.nih.gov) and transcriptome Nvit_OGSv1.2 (obtained from www.hymenopteragenome.org/), using TopHat v2.0.8 (Trapnell et al., 2009). Reads were aligned using default parameters allowing up to 40 alignments per read with a maximum 2bp-mismatch. Discovery of newly transcribed regions and quantification of known isoforms and NTRs was performed by Cufflinks v2.0.2 (Trapnell et al., 2010). Differential gene expression was analyzed using the cuffdiff module of cufflinks. Sequence reads for both samples were independently aligned to annotated TEs, low complexity sequences, simple repeats and satellites (obtained from www.hymenopteragenome.org/) using bowtie -a setting and quantified using in-house scripts.

Discovery of PSR-specific Transcripts

The poly(A)+ transcriptome reads for both PSR+ and WT testes samples were used to build *de novo* transcriptomes for each sample independently using Oases v0.2.08 and Velvet v.1.2.08 (Schulz et al., 2012; Zerbino, 2010). Oases runs were performed with k-mer sizes ranging from 51 to 93 generating a total of 60,784 transcripts for the wild type testes sample and 63,129 transcripts for the PSR+ testes sample. To find transcripts specific to the PSR+ sample, the transcripts produced from the WT sample and PSR+ sample above were blasted to each other, producing 2,038 PSR+ loci that had no hits against WT with an e-value cutoff of 0.1. To further filter down these transcripts, a bowtie database was produced from these transcripts and the poly(A)+ transcriptome reads were aligned for both samples with settings –v 0, -k 50 and –m 50 and transcript abundance was calculated as Reads Per Million (RPM). Transcripts that had reads mapping to them from the WT sample were excluded and we required that the PSR specific transcripts were abundantly expressed and had at least 50 reads mapping to them. This stringent filtering resulted in 9 PSR specific transcripts.

Discovery of NTRs

To search for novel transcribed features (NTRs), we used the current assembly of the *N. vitripennis* genome (Nvit_2.0_scaffolds downloaded from http://www.hymenopteragenome.org) that contains 6,169 contigs and is 295 MB in size, ~2-fold larger than the genome of *Drosophila melanogaster*. This existing genomic annotation, which contains 18,833 genes and 18,923 transcripts, was used as a starting
point for our analysis (Munoz-Torres et al., 2011; Werren et al., 2010a). Sequence reads from both testes samples, HiSeq2000 paired-end–sequenced libraries (2 x 100bp), were used to build de novo transcriptomes (genome supplied and no transcriptome supplied) for each sample, using cufflinks v2.0.2 (Trapnell et al., 2012). Transcript annotation files in GTF format produced by cufflinks for each individual library were combined and cross-referenced with known genes using the cuffmerge module of cufflinks. This resulted in the identification of 2,293 new transcribed regions. The coding potential of NTRs was assessed using the frame finder tool in ESTate (Expressed Sequence Tag Analysis Tools Etc) package (http://www.ebi.ac.uk/~guy/estate/). Protein domains were predicted using the stand alone InterProScan package (iprscan) (Zdobnov E.M. and Apweiler R. "InterProScan - an integration platform for the signature-recognition methods in InterPro" Bioinformatics, 2001, 17(9): p. 847-8.).

Fluorescence in situ hybridization (FISH) and chromosome imaging
The following primers were designed commercially (IDT, Inc.) and conjugated at the 5’ terminus with either Cy5 or Cy3: PSR Locus 317 – 5’-TGT AAC TGG AAA AGG AAA ATG TAT TAT TGA-3’; PSR Locus 1539 – 5’-AGA ATT ATA ATA TAG TTA GCT GGA CAA TTC-3’; PSR Locus 5885 – 5’-TTC GTG TGT GTA TAA AAT TAT ATA TTC TCA AA-3’; Wasp Locus TCONS_00014084 – 5’-AAT TTT GTG AAT TTT GGT GTC TCC ATC-3’; Wasp Locus TCONS_00004522 – 5’-TCT AAT CAA ACG TGA ATT TGG TGT TTT TAA-3’. These probes were hybridized to fixed testes taken from male pupae in the yellow body-red eye stage, according to a previously described protocol (Swim et al. 2012). Slides were prepared by mounting samples in Vectashield with DAPI (Vector Labs, Inc.). Chromosome images were collected on an Olympus IX81 epifluorescence microscope and ImagePro 6.3 imaging software. The images were processed with Adobe Photoshop CS5 version 12.
References

Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343-348.
Spermatogenesis

<table>
<thead>
<tr>
<th>Spermatocyte formation and meiosis</th>
<th>Spermiogenesis</th>
<th>Entry into first mitosis</th>
<th>Metaphase</th>
<th>Anaphase</th>
<th>Exit from first mitosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal gene expression</td>
<td>Paternal chromatin forms normally</td>
<td>Both sets become normally phosphorylated and segregate normally during the first mitosis</td>
<td>Two diploid nuclei derived from both sets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beginning of Embryogenesis

<table>
<thead>
<tr>
<th>PSR expresses transcripts</th>
<th>Paternal chromatin becomes modified</th>
<th>Paternal chromatin becomes abnormally phosphorylated</th>
<th>Paternal chromatin fails to resolve</th>
<th>PSR segregates with the maternal chromosomes</th>
<th>Two haploid PSR+ nuclei derived from maternal set</th>
</tr>
</thead>
</table>