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ABSTRACT The efficiency of feed utilization plays an important role in animal breeding. However,
measuring feed intake (FI) is costly on an individual basis under practical conditions. Using group
measurements to model FI could be practically feasible and cost-effective. The objectives of this study were
to develop a random regression model based on repeated group measurements with consideration of
missing phenotypes caused by drop out animals. Focus is on variance components (VC) estimation and
genetic evaluation, and to investigate the effect of group composition on VC estimation and genetic
evaluation using simulated datasets. Data were simulated based on individual FI in a pig population. Each
individual had measurement on FI at 6 different time points, reflecting 6 different weeks during the test
period. The simulated phenotypes consisted of additive genetic, permanent environment, and random
residual effects. Additive genetic and permanent environmental effects were both simulated and modeled
by first order Legendre polynomials. Three grouping scenarios based on genetic relationships among the
group members were investigated: (1) medium within and across pen genetic relationship; (2) high within
group relationship; (3) low within group relationship. To investigate the effect of the drop out animals during
test period, a proportion (15%) of animals with individual phenotypes was set as the drop out animals, and
two drop out scenarios within each grouping scenario were assessed: (1) animals were randomly dropped
out; (2) animals with lower phenotypes were dropped out based on the ranking at each time point. The
results show that using group measurements yielded similar VCs estimates but with larger SDs compared
with the corresponding scenario of using individual measurements. Compared to scenarios without drop
out, similar VC estimates were observed when animals were dropped out randomly, whereas reduced VC
estimates were observed when animals were dropped out by the ranking of phenotypes. Different grouping
scenarios produced similar VC estimates. Compared to scenarios without drop out, there were no loss of
accuracies of genetic evaluation for drop out scenarios. However, dropping out animals by the ranking of
phenotypes produced larger bias of estimated breeding values compared to the scenario without dropped
out animals and scenario of dropping out animals by random. In conclusion, with an optimized group
structure, the developed model can properly handle group measurements with drop out animals, and can
achieve comparable accuracy of genetic evaluation for traits measured at the group level.
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Feed intake (FI) and feed efficiency are commonly measured in re-
peated periods during productive periods of animals and have been
shown to have varying genetic background across the test trajectory in
a number of species such as mink (Shirali et al. 2015), pigs (Shirali et al.
2017), and dairy cattle (Li et al. 2017). Under commercial animal
breeding practices, for some economically important traits, it may be

more cost-effective to measure performance records on group level
compared to individual level. Several studies have reflected on the fact
that a large number of records are available on group level in many
animal breeding programs, for instance FI in cages of mink (Shirali
et al. 2015), egg production and body weight in groups of laying hens
(Peeters et al. 2013; Biscarini et al. 2010; Biscarini et al. 2008).
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The use of such records for genetic evaluation were first suggested
in a simulation study by Olson et al. (2006), who pooled individual
records together to represent the joint performance of a group of an-
imals, and demonstrated the efficacy of using group records with the
usual mixed model for genetic evaluation. They concluded that group
records can be effectively applied in animal genetic evaluation and
selection decision despite a loss of evaluation accuracy. Based on real
data for body weight from laying hens, Biscarini et al. (2008) developed
a procedure for estimating genetic parameters and predicting breeding
values using group records. Their results demonstrated that, using
group records for genetic analyses were both theoretically and practi-
cally feasible, provided groups had the same size. Recently, Su et al.
(2018) further developed the approach of Olson et al. (2006) in a
simulation study. They concluded that it was possible to extend the
approach to account for differing group size, and non-genetic random
effects such as litter and pen effect for genetic parameter estimation and
breeding value prediction. These approaches for genetic analyses of
group records have revealed that group composition and group size
are the vital factors influencing the accuracy of genetic parameter esti-
mation and genetic evaluation when using group measurements
(Peeters et al. 2013; Su et al. 2018). However, all these applications
of using group measurements were with a single measurement from
each group.

In order to effectively use all information in practical breeding
programs, itwouldbeattractive to furtherextendtomodels foranalyzing
longitudinal records. A particular concern with group records on
longitudinal traits is that animals may drop out from the groups during
the test, due to e.g., sickness or death. Hence, such group records at
different time points may not represent the same animals.

The objectives of this study were (1) to develop a random regression
model based on repeated group measurements with a consideration of
drop out animals for estimation of variance components (VCs) and
genetic evaluation;and(2) toexamine the effectof groupcompositionon
estimates of VC and accuracy of predicting breeding values.

MATERIALS AND METHODS

Simulated Data
A dataset based on individual measurements for FI in a pig population
was simulated. The simulated population consisted of 11 generations
without overlap. In each generation, 30 sires were selected and each sire
was mated to 20 dams with a litter size of 6 individuals. For simplicity,
random selection and randommating were performed in the simulated
population and sows were assumed to have one parity only. Thus, the
possible genetic trend across generations was not accounted for in this
study. Each individual had 6 measurements on FI at 6 different time
points reflecting 6 different weeks during the test period. In this study,
the group measurement was defined as the sum of the individual
measurements within a group. Consequently, each group had 6 mea-
surements reflecting 6 different time points. The phenotypes from the
last 5 generations were used for VCs estimation and genetic evaluation.

The simulated phenotypic records consisted of additive genetic,
permanent environmental, and residual effects. First order Legendre
polynomialswere used to generate both additive genetic and permanent
environmental effects; hence, additive genetic effects for each animal
contained two coefficients, intercept (b0) and slope (b1). Under such a
design, additive genetic effects for the founder animals were drawn
directly from a multivariate normal distribution Nð0; GÞ; where

G ¼
�
63:42 25:42
25:42 6:85

�
is a 2·2 genetic covariance matrix of the in-

tercept and regression coefficient; thus, the breeding values for founder

animals were calculated as L

�
b0
b1

�
, where L is a 6·2 matrix of Legendre

polynomials for the 6 test time points; additive genetic effects for each
offspring were calculated as ai ¼ 1

2 ðas þ adÞ þmi; where ai; as and ad
are the vector of breeding values for animal i, with sire s and dam d,
respectively. The vectormi is the Mendelian sampling terms for animal

i drawn from a multivariate normal distribution N

�
0; 1

2 ð12 FiÞG
�
;

and Fi ¼ 1
2ðFs þ FdÞ; where Fs and Fd are the inbreeding coefficients of

sire s and dam d for animal i, respectively. Permanent environmental
effects were drawn from a multivariate normal distribution with mean

of zero and variance of P ¼
�
30:61 4:28
4:28 29:25

�
. The heritabilities (h2)

assumed along the testing time trajectory are shown in Figure 1. By
assuming a homogeneous residual variance in the simulation, residual
effect for each animal was drawn from a normal distribution withmean
of zero and variance of s2

e ¼ 53:45. It was assumed that there were no
interactions among these effects.

Individual phenotype for each animal at each time point on the test
was obtained as yt ¼ Øtat þ Øtpt þ et where Øt is a 1·2 matrix co-
efficients of Legendre polynomials at time point t; at and pt are 2·1
matrices of sampled intercept and regression coefficient of each animal
for additive genetic and permanent environmental effects, respectively;
et is a scalar of sampled residual. A pen was constructed by allocating
12 animals to a group unit.

Group Composition Scenarios
Three grouping scenarios based on genetic relatedness of the group
members were investigated for VCs estimation and genetic evaluation:
(1) medium within and across pen genetic relationship (Group3·4): a
litter was randomly split into two sub-litters of size 3, group was con-
sisted of 4 different sub-litters (families); (2) high within group relation-
ship (Group6·2): all pigs from 2 different litters were allocated to a
group; (3) low within group relationship (Group1·12): group consisted
of 12 pigs, which were randomly selected from 12 different litters. The
grouping process was conducted within generation.

To investigate the effect of the drop out animals during test
period, a proportion of animals (15%) from the last five generations
(since only phenotypes of animals from the last five generations were
used for analysis) was set as the drop out animals. Once the animal
was dropped out, the phenotypes of that animal from the drop out
time point and forward were set to missing. In the present study, two
drop out strategies within each grouping scenario were assessed: (1)
Dropran: drop out animals were randomly selected, and the drop out
time of each drop out animal was sampled randomly from a vector
of the integers from 1 to 6 representing the six testing time points;
(2) Dropphe: six time intervals were defined based on six testing time
points, the number of drop out animals at each interval was sampled
from a Poisson distribution with a mean equal to the total size of
drop out animals divided by six. Animals were ranked from low to
high level based on their phenotypes at each testing time point, then
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a number of animals with lowest of phenotypes were dropped out.
The number of drop out animals was based on the number sampled
from the Poisson distribution. For each scenario, we performed
10 replicates.

The simulation was conducted in R (R Core Team 2019) and Julia
(Bezanson et al. 2017). The scripts are in supplemental files.

Statistical models
Repeated individual measurements were analyzed by random regres-
sion model as follows:

yit ¼
Xnf
k¼0

Øitkbk þ
Xnr
k¼0

Øitkaik þ
Xnp
k¼0

Øitkpeik þ eit

where yit were the phenotype of animal imeasured on time point t; bk

is the kth fixed regression coefficient; aik and peik are the kth random
regression coefficients of animal i for additive genetic and permanent
environmental effects, respectively; Øitk is the Legendre polynomials
as the covariates for the record of animal i measured on time point t;
nf is the order of polynomials fitted as fixed regressions; nr is the order
of polynomials for additive genetic effects; np is the order of polyno-
mials for permanent environment effect, nf, nr, and np were all first
order Legendre polynomials; eit is the random residual with assump-
tion of homogeneous variance. It was assumed that the additive ge-
netic effects follow Nð0; A5GÞ; the permanent environmental
effects follow Nð0; I5PÞ; and the residual effects follow
Nð0; Is2

e Þ; where A is the numerator relationship matrix, and I is
the identity matrix.

Repeated group measurements were analyzed by the following
random regressionmodel obtained by summing the terms in themodel
for individual measurements within each group j, and is as follows:

y�jtmj
¼ GSmj

Xnf
k¼0

Øjtkbjk þ
Xnjt
i¼1

Xnr
k¼0

Øijtkaijk þ
Xnjt
i¼1

Xnp
k¼0

Øijtkpeijk

þ e�jtmj

where y�jtmj
is the phenotype of group jmeasured at time t with group

size (GS) ofm (m = 1, 2, ... 12); GSmj is the fixed effect of group sizem
for group j; bjk is the kth fixed regression coefficient for group j nested
within group size effectm; aijk and peijk are the kth random regression
for additive genetic and permanent environmental effects, respec-
tively, for animal i in group j; Øijtk is the covariate coefficient of
Legendre polynomials for animal i in group j measured at time t;
njt is the number of animals in group j at time t; e�jtmj

is the random
residual with the variance of Ds2

e , where D is a diagonal matrix with
elements of group sizes for group j.

Variance components were estimated by restrictedmaximum likeli-
hood (REML) (Patterson and Thompson 1971) with the average in-
formation algorithm (AI-REML) (Gilmour et al. 1995; Johnson and
Thompson 1995; Madsen et al. 1994), breeding values were predicted
by best linear unbiased prediction (BLUP) (Henderson 1985). All anal-
yses were performed using the DMU package (Madsen and Jensen
2013).

Validation
A selection index of FI was defined in this study. Based on the
characteristics of longitudinal records, where performance is measured
sequentially over time on each animal. The FI measurements for all
6 time points during the test phase can be considered as 6 different and
correlated traits. The selection index was then calculated as a weighted
sum of the estimated breeding values (EBV) from all the 6 testing time
points usingweight of 1 for each trait. To compare the efficiency of using

Figure 1 The trajectory of simulated (true) herita-
bility, and heritability estimates (mean of 10 repli-
cates) as a function of days on test for different drop
out scenarios within individual measurement and
each grouping strategy. No_Drop: measurements
without drop out animals; Dropran: drop out animals
were randomly selected and the drop out time of
each drop out animal was sampled from a vector of
the integers from 1 to 6 representing the six testing
time points; Dropphe: six time intervals were defined
based on six testing time points, the number of
drop out animals at each interval was sampled from
a Poisson distribution with a mean equal to the de-
fined proportion of drop out animals divided by six.
Animals were ranked based on their phenotypes at
each testing time point, then dropped out based on
the number sampled from the Poisson distribution;
medium within and across pen genetic relationship
(Group3·4): group was consisted of 4 different fam-
ilies with 3 pigs from each family; high within group
relationship (Group6·2): all animals from 2 different
litters were allocated to a group; low within group
relationship (Group1·12): all animals were from dif-
ferent litters.
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group measurements with individual measurements, accuracy of ge-
netic evaluation was computed as the Pearson correlation coefficient
between EBVs and simulated breeding values for animals having
phenotypic data. Unbiasedness of genetic evaluation was evaluated
through the regressionof simulated (true) breeding values on theEBVs
for animals having phenotypic data.

Data Availability
Simulated data available at Figshare: https://doi.org/10.6084/
m9.figshare.8047367.
Files at this URL are simulated pedigree and phenotypes based
on different grouping scenarios and drop out strategies. Simu-
lation scripts available at Figshare: https://doi.org/10.6084/
m9.figshare.8312555.

The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article, and tables.
Supplemental material available at FigShare: https://doi.org/10.25387/
g3.8046995.

RESULTS
Table 1 presents themean and standard deviation (SD) of estimated VCs
over 10 replicates using repeated individual and group measurements
based on different grouping and drop out scenarios. Unbiased estimates
of VCs were obtained when analyzing individual measurements. In gen-
eral, using group measurements yielded similar VCs estimates but with
larger SDs as the corresponding scenario with individual measurements.
Similar VC estimates were observed from random drop out scenarios
(Dropran) compared with no drop out scenario (No_Drop). Different
grouping scenarios based on genetic relatedness of the group members
produced similar VCs estimation. The grouping scenario of high within
group relationship (Group6·2) resulted in lowest SDs for genetic (co)-
variances and residual variance among all the grouping scenarios. How-
ever, the SDs for permanent environmental (co)variances were the
highest among all the grouping scenarios.

Figure 1 presents a multi-panel plot showing the trajectory of simu-
lated (true) heritability, and heritability estimates (mean of 10 replicates)
as a function of days on test for different drop out scenarios within each
grouping strategy. Clearly, the heritabilities were not constant throughout
the test period with a tendency toward lower heritability estimates in the
middle and late stages of test period. This trend was consistent across
different grouping strategies. The trajectories of heritability estimates
were similar between no drop out scenario (No_Drop) and randomdrop
out scenarios (Dropran). Lowest estimates of heritability were observed
for scenario of Dropphe.

Mean and SD of evaluation accuracy and bias using repeated indi-
vidual and group measurements based on different grouping and drop
out scenarios are shown in Table 2. As expected, the highest accuracy
was achieved by using individual measurements. As can be seen from
the table, compared with no drop out scenarios, drop out scenarios
show that there is no loss of evaluation accuracy. Among the grouping
scenarios, the high within group relationship (Group6·2) had highest
accuracy, whereas the low within group relationship (Group1·12) had
lowest accuracy.Within drop out scenarios, randomdrop out scenarios
(Dropran) and scenarios of drop out by phenotypes (Dropphe) resulted
in similar accuracies. Unbiased evaluations reflected by regression of
simulated on predicted genetic values, were obtained when using indi-
vidual measurements and group measurements from no drop out
grouping scenarios (No_Drop) and random drop out scenarios
(Dropran). Deflation of EBVs from scenarios of drop out by phenotypes
(Dropphe) were found across all the scenarios. n
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DISCUSSION
In the present study, a random regression model for analyzing repeated
group measurements was developed and investigated on simulated
data. The model was able to consider varying group sizes during the
test period caused by drop out animals, which addresses an important
practical issue. Different grouping strategies in terms of genetic re-
latedness among the group members were also assessed. The results
show that the random regression model for longitudinal group mea-
surements yielded unbiased VCs estimation for scenarios of random
drop out, and the high within group relationship (Group6·2) achieved
the highest accuracy among all the grouping scenarios.

Group vs. individual measurements
The SDs of estimated VCs from group measurements were larger
compared with those from individual measurements. This indicates
less information was available due tomerging individualmeasurements
into groupmeasurements. Larger SE of genetic parameter estimateswas
also reported by (Biscarini et al. 2008) when group analysis of body
weight on cage level was compared to individual body weight recording
for laying hens. Peeters et al. (2013) used simulated pooled records to
estimate VCs for traits affected by social interactions in laying hens and
found the VC estimates from group records did not differ significantly
from the simulatedVCs. The results in the current study is in linewith a
recent study of Su et al. (2018), where VCs estimated from univariate
group records were reported to be consistent with those estimated from
univariate individual records but with larger standard errors.

The accuracy of EBV is of great importance for animal improvement
programs as animals are ranked based on their breeding values. In the
current study, we observed lower accuracies when using group measure-
ments compared with using individual measurements. The reduction of
evaluation accuracy is as expected and due to the reduction of information
content by merging the animals into groups. Olson et al. (2006) used
simulated group measurements for genetic evaluation, and reported that
accuracies of using group measurements compared to those of using in-
dividual measurements decreased from 0.77 to 0.50, from 0.77 to 0.53 for
randomgrouped animals and animals grouped based on sires, respectively;
the reduction of accuracy weremore profound as the group size increased.

Biscarini et al. (2008) reported that EBV accuracy obtained from
pooled records was about 70–80% of the accuracy of EBV predicted
from individual records. Su et al. (2018) reported 68% for the EBV
accuracy achieved from group records to that from individual records.
However, the notable cost savings of using group measurements com-
pared with using individual measurements can counteract the reduced
prediction accuracy.

Group Composition
In the present study, we simulated the trait of FI in a pig population, hence,
a pen was defined as a group. In practice, the strategies of allocating pigs
into pens varies across herds; therefore, a good grouping strategy can
maximize the effective use of group information. In this study, this was
demonstrated by the group scenario of Group6·2 in terms of highest
accuracies of genetic evaluation among all the grouping scenarios, where
the animals in the group had the closest genetic relationships compared
with scenarios of Group3·4 and Group1·12. Our results are in line with the
previous simulation study by (Olson et al. 2006) who found that allocating
animals to groups on the basis of their sire information achieved better
accuracies of breeding values than allocating animals to groups on the basis
of maternal grandsire (MGS) and random allocation. Through theoretical
derivations and simulations, Peeters et al. (2013) showed that smaller SE on
genetic variance estimates were achieved when allocating animals from the
same family to the group. Interestingly, when directly using the VCs from
simulation, Su et al. (2018) verified the accuracy of breeding values were
increased with increased genetic relationships of the group members. A
possible explanation for these results might be that, when we use the group
measurements, the proportion of additive genetic to phenotypic variance
increases as the genetic relationships among the group members increase
(Su et al. 2018). However, it is important to note that one major difference
between their studies and the current study is that we used repeated group
measurements whereas they used single group measurement.

Drop outs
The method presented in this study allows consideration of missing
phenotypes caused by drop out animals in each group. In particular,
the scenario of dropping out animals by ranking of phenotypes (Dropphe)
was designed to reflect the practical situation, where animals with poor
phenotypes are more susceptible to diseases and thus, more likely to be
culled. We observed reduced VC estimates from the scenario of Dropphe
for both individual and group measurement (Table 1), leading to larger
biases of EBV (Table 2), these results were mainly influenced by the
decreased phenotypic and genetic variances due to reduced number of
animals with lower performance records. Therefore, this seems that, it
would be preferable to perform genetic evaluation using group measure-
ments with VCs estimated from individual measurements, if feasible.

Extra random effects
In the current study, litter and pen effects were not simulated in order to
provide a simple platform for explanation of the approach. However,
those effects were investigated by

n Table 2 Mean and standard deviation (SD) of prediction and bias of estimated breeding values (EBV) over 10 replicates from repeated
individual measurements and group measurements based on different grouping and drop out scenarios1

Individual Group3·4 Group6·2 Group1·12

Item2 No_Drop Dropran Dropphe No_Drop Dropran Dropphe No_Drop Dropran Dropphe No_Drop Dropran Dropphe

r 0.858
(0.019)

0.859
(0.019)

0.829
(0.023)

0.676
(0.052)

0.677
(0.050)

0.671
(0.052)

0.707
(0.043)

0.707
(0.043)

0.701
(0.044)

0.629
(0.058)

0.635
(0.060)

0.622
(0.058)

b1 1.004
(0.013)

1.006
(0.014)

1.113
(0.023)

1.009
(0.031)

1.005
(0.035)

1.152
(0.052)

1.019
(0.031)

1.016
(0.032)

1.149
(0.038)

0.990
(0.019)

0.992
(0.020)

1.180
(0.055)

1
Medium within and across pen genetic relationship (Group3·4): group was consisted of 4 different families with 3 pigs from each family; High within group
relationship (Group6·2): all animals from 2 different litters were allocated to a group; Low within group relationship (Group1·12): all animals were from different
litters. No_Drop: measurements without drop out animals; Dropran: drop out animals were randomly selected and the drop out time of each drop out animal was
sampled from a vector of the integers from 1 to 6 representing the six testing time points; Dropphe: six time intervals were defined based on six testing time points,
the number of drop out animals at each interval was sampled from a Poisson distribution with a mean equal to the total size of drop out animals divided by six.
Animals were ranked based on their phenotypes at each testing time point, then dropped out based on the number sampled from the Poisson distribution.

2
r: Pearson correlation coefficient between EBVs and simulated breeding values for animals having phenotypic data; b1: regression coefficient of simulated breeding
values on EBVs for animals having phenotypic data.
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Su et al. (2018) based on a univariate analysis (single measurement),
where group records were modeled with considering of litter and pen
effects, and compared with the models ignoring litter and pen effects.
Their results showed that ignoring litter and pen effects had no influ-
ence on the prediction accuracy. Extending the use of the currentmodel
to include extra random effects can refer to the same methodology as
presented by Su et al. (2018).

The design of the current simulation study was based on a single
trait model. Nevertheless, genetic evaluations are mostly carried out
using a multi-trait model to take advantage of the genetic correlations
among traits and estimate breeding values simultaneously. It can
therefore be expected that traits with groupmeasurements, can benefit
from genetically correlated traits with individual measurements via
multi-trait model (e.g., FI and average daily gain).

CONCLUSIONS
In conclusion, theproposed randomregressionmodel is feasible tohandle
repeated groupmeasurements with consideration of drop out animals. In
this study,weobservedreducedVCestimateswhenanimalsweredropped
out by ranking of phenotypes. However, using groupmeasurements with
drop out animals by ranking of phenotypes can provide similar accuracy
but larger bias of EBV compared to those of using group measurements
withoutdroppedout animals.Therefore, itwouldbepreferable toperform
genetic evaluation using group measurements with VCs estimated from
individual measurements. In addition, the findings clearly indicate that
group composition plays a critical role in genetic evaluation when using
group measurements. Hence, allocating animals with close genetic rela-
tionships to the same group could optimize the use of group measure-
ments. Overall, this model could provide a cost-effective solution in
breedingprograms, thus itcanbeapplied totheroutinegeneticevaluations
and extended to more species and traits.
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