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ABSTRACT Inferring subject ancestry using genetic data is an important step in genetic association
studies, required for dealing with population stratification. It has become more challenging to infer subject
ancestry quickly and accurately since large amounts of genotype data, collected from millions of subjects by
thousands of studies using different methods, are accessible to researchers from repositories such as the
database of Genotypes and Phenotypes (dbGaP) at the National Center for Biotechnology Information
(NCBI). Study-reported populations submitted to dbGaP are often not harmonized across studies or may be
missing. Widely-used methods for ancestry prediction assume that most markers are genotyped in all
subjects, but this assumption is unrealistic if one wants to combine studies that used different genotyping
platforms. To provide ancestry inference and visualization across studies, we developed a new method,
GRAF-pop, of ancestry prediction that is robust to missing genotypes and allows researchers to visualize
predicted population structure in color and in three dimensions. When genotypes are dense, GRAF-pop is
comparable in quality and running time to existing ancestry inference methods EIGENSTRAT, FastPCA, and
FlashPCA2, all of which rely on principal components analysis (PCA). When genotypes are not dense, GRAF-
pop gives much better ancestry predictions than the PCA-based methods. GRAF-pop employs basic
geometric and probabilistic methods; the visualized ancestry predictions have a natural geometric
interpretation, which is lacking in PCA-based methods. Since February 2018, GRAF-pop has been
successfully incorporated into the dbGaP quality control process to identify inconsistencies between
study-reported and computationally predicted populations and to provide harmonized population values in
all new dbGaP submissions amenable to population prediction, based on marker genotypes. Plots,
produced by GRAF-pop, of summary population predictions are available on dbGaP study pages, and the
software, is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/Software.cgi.
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Inference of individual ancestry from genetic data arises in genome wide
association studies (GWAS), personalized medicine, and human migra-
tion studies. Several reviews on ancestry inference methods are available

(Lawson and Falush 2012; Liu et al. 2013; Padhukasahasram 2014;
Wollstein and Lao 2015;Novembre and Peter 2016;Hellwege et al. 2017).

The “(global) problem of ancestry inference” of human genetics
takes as input genotype data onMmarkers forN subjects and produces
as output some sort of clustering or assignment of the N subjects into
populations. There have been two popular classes of solutions to this
problem: model-based and distance-based methods.

Model-based approaches, represented by the software packages
STRUCTURE (Pritchard et al. 2000), fastSTRUCTURE (Raj et al. 2014),
ADMIXTURE (Alexander et al. 2009), and FRAPPE (Tang et al. 2006),
estimate ancestral proportions based on a statistical model, e.g., individuals
being randomly drawn from K distinct populations and may also use the
technique of Hidden Markov Models (HMMs). Distance-based methods
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are based on embedding points in a high-dimensional space and combin-
ing algebraic and geometric tools to represent key features. Distance-based
methods use principal components analysis (PCA) (Patterson et al. 2006;
Price et al. 2006), multidimensional scaling (MDS) (Purcell et al. 2007),
spectral graph theory (Lee et al. 2010), or network theory (Greenbaum et al.
2016). The focus of our study is a new distance-based method, which we
have implemented in freely available software, called GRAF-pop.

PCA-based approaches are themost usedmodel-free ancestry inference
methods. PCA analyzes a pairwise genetic similarity or genetic distance
matrixbetween individuals andfindsancestral clusters byprojecting thedata
to a lower-dimensional space. Compared to model-based methods, PCA-
based approaches are usually faster and easier to use.Model-basedmethods
estimate parameters using computationally intensive algorithms such as
Markov ChainMonte Carlo algorithm (Pritchard et al. 2000) or maximum
likelihood estimation (Tang et al. 2005; Tang et al. 2006; Alexander et al.
2009). Multiple parameters need to be tuned to run model-based software.
Choosing the number of populations is difficult (Alexander et al. 2009), and
usually also requires knowledge of the population’s history.

The first PCA methods such as EIGENSTRAT, have running times
that grow as the square of N (more formally O(MN2)). Advances in
random matrix theory led to the implementation of asymptotically
faster methods with running time linearly proportional to N, such as
FlashPCA (Abraham and Inouye 2014; Abraham et al. 2017) and
FastPCA (Galinsky et al. 2016). PCA analysis across datasets is not
necessarily robust.

PCcoordinates in thePCAplots arenotdirectly interpretable (Lee et al.
2010) in contrast to the coefficients estimated by model-based methods.
In addition, unlike model-based methods, traditional distance-based
approaches do not necessarily assign individuals to populations or
estimate ancestral proportions for admixed individuals.

Model-based and PCA-based methods can work well for datasets
with samples genotyped for the same set of variants using the same
genotyping or sequencing platform. However, researchers often wish to
dometa-analyses combiningmultiple datasets genotyped usingdifferent
methods. With the establishment of public genotype databases, such as
the database of Genotypes and Phenotypes (dbGaP) (Mailman et al.
2007) and the European Genotype-phenotype Archive (EGA)
(Lappalainen et al. 2015), investigators now can access genotype
datasets of millions of individuals. Most PCA-based methods, as well
as model-based approaches, generate different ancestry results for the
same individual when different individuals are included in the data-
sets being analyzed. Moreover, PC scores are not comparable when
different sets of markers are analyzed.

Because of the public availability of outside data that can guide
ancestry inference, several research groups considered modifications to
problem of ancestry inference, which we describe here together as
methods that incorporate reference data. The reference data for these
methods typically consist of genotypes of individuals whose ancestries
are extrememly reliable andnot veryadmixed (e.g., the originalHapMap
samples). One way to use such reference data is to find ancestry in-
formative markers (AIMs) using the subjects with reliable ancestries
and to use AIMs to infer ancestry of other subjects. Many AIM panels
have been built, especially for forensic analyses (Halder et al. 2008;
Nassir et al. 2009; Galanter et al. 2012; Daya et al. 2013; Kidd et al.
2014; Bulbul et al. 2018; Wang et al. 2018; Zhao et al. 2019). Another
way to infer ancestry with reference data can be seen in ADMIXTURE
and FRAPPE that perform supervised analyses using reference panels
to improve the estimation accuracy (Tang et al. 2006; Alexander et al.
2009; Thornton et al. 2014; Conomos et al. 2015).

A third formulation of methods using reference data, which we
consider here, is to infer ancestry with the aid of only the summary data

of the reference panels. This formulation is attractive because one does
not need to spend effort or obtain permission to download individual
genotypes. iAdmix (Bansal and Libiger 2015) is a model-based method
that infers ancestry using a reference set of population allele frequen-
cies. ADMIXTURE has been upgraded to estimate individual ancestry
by projecting the new samples to the pre-calculated population struc-
ture of reference panels (Shringarpure et al. 2016). Similarly, for PCA-
based methods, subject ancestry can be inferred by projecting samples
in one dataset to the SNP weights calculated using another dataset.
PCAiR (Conomos et al. 2015) partitions subjects in the target dataset
into a “reference” subset containing individuals known to be unrelated
and another subset containing all other individuals, and calculates SNP
weights using the reference subset and applies the weights to all indi-
viduals. SNPweights (Chen et al. 2013) and FastPop (Li et al. 2016) use
fixed sets of pre-selected SNPs from outer reference populations to
calculate SNP weights and infer subject ancestry for target samples
by projecting their genotypes to these SNP weights. Using SNP weights
pre-calculated from the same reference populations makes the results
comparable across target datasets and allows the software to execute
faster.

The previous methods using reference data employ a fixed set of
SNPs from reference panels. These methods require that the target
samples have genotypes available for most of these SNPs. This
requirement is hard to meet when analyzing multiple datasets
downloaded from databases like dbGaP. To date, dbGaP has
genotypes of more than a million subjects spanning hundreds of studies,
genotyped using many different platforms. No SNP is included in all
genotyping platforms found in dbGaP. Nevertheless, both dbGaP staff
(for harmonization and QA/QC) and outside researchers (so they can
reanalyze thedata),want to inferancestryofdbGaPsubjectsacross studies.

No previous methods for ancestry inference are robust in datasets
with high rates of non-randomlymissing genotypes.Most existing tools
filter out individuals with high genotypemissing rates, e.g., 5% ormore.
When encountering missing genotypes in calculations, existing meth-
ods, e.g., EIGENSTRAT (Price et al. 2006), SNPweights (Chen et al.
2013), and AIPS (Byun et al. 2017), usually replace themwith the mean
genotype values. As more missing genotypes are replaced, the more
likely that an individual is predicted to have an average ancestry back-
ground, where average depends on the other members of the target or
reference dataset used.

To find duplicate samples and closely related subjects across studies
indbGaP,wepreviouslydevelopeda statisticalmethodandsoftware tool
called GRAF (standing for Genetic Relationship And Fingerprinting)
(Jin et al. 2017). One contribution of GRAFwas to define a set of 10,000
unlinked, autosomal biallelic SNPs with high minor allele frequency
(MAF), good coverage on many of the widely used genotyping plat-
forms, and other desirable characteristics. GRAF extracts genotypes of
these “fingerprint SNPs” for all samples.

Here, we describe GRAF-pop, a new distance-based method for
ancestry inference using reference, that uses the fingerprint genotypes
extracted by GRAF and 1) does not assume that the reference pop-
ulations and target samples have been genotyped at mostly the same
markers, 2) does not impute missing genotypes, 3) only requires allele
frequencies of reference populations, and 4) does not use PCA. GRAF-
pop can give reliable population assignments when the rate of missing
genotypes far exceeds 5%. GRAF-pop makes accurate ancestry estima-
tions even if the missing genotypes are non-random. The main conti-
nental populations can be well separated from one another even when
there are only 100-200 fingerprint SNPs with genotypes. GRAF-pop is
fast, with running time linear in the product of number of individuals
and SNPs. In addition, GRAF-pop incorporates a visualization tool to
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plot all individuals into the same plot and uses the same standards to
assign them into different populations, regardless of the genotyping
platform.

METHODS

Use of dbGaP data for the development of
validation tools
GRAF and GRAF-pop have been developed to improve quality control
in curation, and to harmonize population values across studies. NCBI
staff have access to data within dbGaP for the purposes of managing
data, QC, and tool development, such as the development of GRAF
previously, and here GRAF-pop. The analyses shown here involve
six dbGaP studies: phs000050 (HapMap), phs000403, phs000420,
phs000456, phs000517, phs000788. The study-reported population
summary information for these studies arepublishedboth in literature,
and on public dbGaP. This manuscript was reviewed in accordance
with NIH Genomic Data Sharing Policy governace.

Reference population data and subject group data from
within dbGaP
Herein, the phrase “study-reported population” refers to the population
term assigned to a subject submitted to dbGaP by the group producing/
collecting data. The study-reported population terms and granularity of
the terms vary across studies and may have been either collected from
participant interviews or questionnaires or inferred computationally
using genotypes. Some studies submitted to dbGaP do not submit
any population values.

The phrase “reference populations” refers to five large sets of dbGaP
subjects with the following study-reported population values: (1)
White, Caucasian, European, European American, and other equiva-
lent terms (2) Black, African, African American, Ghana, Yoruba, etc.
(3) Asian, East Asian, Chinese, Japanese, etc. (4) Asian Indian, Pakistani;
(5) Mexican, Latino. After closely related subjects and outliers were
removed using GRAF, allele frequencies were calculated for each refer-
ence population.

The term “subject group(s)” refers to smaller sets of subjects from
dbGaP: 8,475 study-reported CEU (denoted E), 904 individuals from
Ghana (denoted F), 7,612 Chinese, and 4,138 Japanese (combined and
denoted A). The subject groups are subsets of reference populations 1,
2, and 3, respectively, in which the study-reported population is espe-
cially trustworthy.

Clustering subjects using genetic distances
Suppose there are K mutually exclusive, random-mating reference

populations, with nj individuals for each population j, and
PK

j¼1 nj ¼
N . Consider S independent, biallelic SNPs. For each SNP l and pop-
ulation j, suppose the reference and alternate allele frequencies are pjl
and qjl, respectively. The fingerprint SNPs used by GRAF and GRAF-
pop were previously selected to be spread out, so that no pairs have
substantial linkage disequilibrium and on the initial test sets were in
Hardy-Weinberg equilibrium. Let gil 2 f0, 1, 2} be the count of refer-
ence alleles of subject i at SNP l. The probabilities to have each gil
value are:

P
�
giljpopulation ¼ j

� ¼
8<
:

q2il if   gil ¼ 0
2pilqil if   gil ¼ 1
p2il if   gil ¼ 2

Denoting gi as the genotype of the subject i over all the S SNPs, we
have

P
�
gijpopulation ¼ j

� ¼YS
l¼1

P
�
giljpopulation ¼ j

�

In principle, the probability that subject i belongs to population j could
be calculated using Bayes’ theorem:

P
�
population ¼ jjgi

� ¼ njP
�
gijpopulation ¼ j

�
PK
k¼1

nkP
�
gkjpopulation ¼ k

� (1)

In practice, most individuals cannot be unambiguously classified into
populations due to admixture. Equation (1) does imply that the prob-
ability P(gi|population = j) reflects the similarity between subject i and
population j. Taking negative logarithm and normalizing it on num-
ber of SNPs with genotypes, we define a “distance”:

Dij ¼ 2
1
S
ln
YS
l¼1

P
�
giljpopulation ¼ j

� !

It can be rewritten as:

Dij ¼ 2
1
S

XS
l¼1

h
gil   lnðpjlÞ þ ð22 gilÞlnðqjlÞ þ gilð22 gilÞlnð2Þ

i
(2)

Since Dij is greater when the genotypes of subject i are more different
from the genotypes of population j, we use Dij as an estimate of the
genetic distance between subject i and population j.

For each subject i, we can calculateK Dij values, and represent them
as a point in K-dimensional space. If we plot all subjects in the K-
dimensional space, subjects will be clustered based on their genetic
similarities. We treat the centroids of the K reference population clus-
ters as vertices of a (K-1)-dimensional simplex (e.g., a triangle if K = 3).

Estimating ancestry proportions using
barycentric coordinates
Assuming all subjects are admixtures of R (1 , R # K) ancestry
populations, we can define a simplex based on the R centroids and
then use barycentric coordinates (Ungar 2010) (defined below) to esti-
mate ancestry proportions by mapping each subject to a point relative
to the (R-1)-dimensional simplex. We select R groups of subjects with
genotypes of the same set of S SNPs mentioned above. Suppose all
subjects in each group have one of the R ancestries. For each subject,
we calculate the D values with reference to R-1 populations and repre-
sent that subject by a position in (R-1)-dimensional space. For each
ancestry group, we calculate the centroid of all its subjects.

The R centroids, denoted V1, . . ., VR, become vertices of a simplex.
For any pointQ representing a subject, we calculate the unique absolute
barycentric coordinates (l1, . . ., lR) for Q by solving the following
equations:

Q ¼ l1V1 þ :::þ lRVR

XR
r¼1

lr ¼ 1

The unique solution of the equations can be found by taking deter-
minants of some 3·3 matrices when R = 3, as described below, or by
an equivalent geometric method (Ungar 2010). We use R = 3, rather
than R = 5 partly because 3 dimensions are the most that are easy to
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visualize. If Q is within the simplex, then barycentric coordinates are
all positive. Letting Pr be the proportion of ancestry r, we estimate the
proportion as Pr = lr. In general Qmay fall outside of the simplex, so
we estimate Pr as follows:

1. Let l’r = max(0, lr), "r 2 f1, .., R}
2. Set Pr as:

Pr ¼ l’rPR
r¼1

l’r

Starting froma triangle,where eachvertex represents oneof the three
HapMap populations, SNPweights (Chen et al. 2013) uses the same
algebra to compute ancestry proportions for points inside the triangle,
but handles points outside the triangle differently.

Normalizing scores using barycentric coordinates
In previous subsections, we assumed that all subjects have genotypes on
the sameSNPs. IndbGaPusage, genotypes aremissingbecause different
genotyping platforms were used in different dbGaP studies. We nor-
malize the D values when there are missing genotypes. For an ancestry
group r, suppose the two allele frequencies of SNP l are url and vrl. If we
compare all subjects in r to population j over S SNPs, the mean genetic
distance is expected to be:

ED all ¼ E
�
Drj
�

¼2
1
S

XS
l¼1

h
u2rl   ln

�
p2jl

�
þ 2urlvrlln

�
2pjlqjl

�
þ v2rl   ln

�
q2jl

�i
(3)

The subscript “all” conveys that all 10,000 SNPs are used at this stage.
For a subject i, if all S SNPs have genotypes, we can 1) use Equation (3)
to calculate the expected centroids for the R ancestry groups, 2) use
the simplex formed by these centroids, and 3) calculate the ancestry
proportions of each new subject as barycentric coordinates with re-
spect to the simplex. If there are missing genotypes, we ignore the
SNPs with genotypes missing, and calculate the genetic distance from
subject i to each population j.

Suppose subject i has genotypes for S’ (S’, S) fingerprint SNPs, i.e.,
l1, l2, . . ., lS’. We use an equation like Equation (3) to calculate the
expected distance EDi, from each group r to population j, for the subset
of SNPs genotyped for subject i.

EDi ¼2
1
S9

XS9
m¼1

h
u2rlm ln

�
p2jlm

�
þ 2urlmvrlmln

�
2pjlmqjlm

�

þ v2rlm ln
�
q2jlm

�i
(4)

Using EDi values of the R ancestry groups as vertices, we can build a
simplex and use it as a reference to calculate the barycentric coordi-
nates for subject i. The barycentric coordinates are converted back to
the Cartesian coordinates using ED_all values as references for
plotting.

Implementing the ancestry inference method Into the
GRAF software package
The above method is implemented in the GRAF-pop feature of the
GRAF software package (version 2.3). As in GRAF 1.0, the main

program is implemented in C++, auxiliary programs are implemented
in Perl, and graphic displays rely on the Perl GD Graphics Library
(http://search.cpan.org/�lds/GD-1.38/GD.pm).

We use the same 10,000 well-separated, autosomal, biallelic SNPs
used in GRAF v1.0 (Jin et al. 2017) to determine subject ancestry. Five
reference populations, listed above, are used to calculate genetic dis-
tances. The allele frequencies at these SNPs (pjl and qjl) are estimated
using the subjects submitted to dbGaP and reported by the submitters
as having these ancestry backgrounds. For each subject i, we calculate
five D values: Di1, Di2, Di3, Di4, Di5, for the five reference populations.

The first three D values, Di1, Di2 and Di3, are treated as the x, y, z
Cartesian coordinates for each subject i, and are used for calculating
barycentric coordinates. Three subject groups (E, F, A) are used to build
the reference triangle, denoted as DEFA, whose vertices are the cen-
troids of these three groups. This triangle is mapped to the x-y plane by
translation and rotation, so that the side FA is parallel to the x-axis. The
transformed triangle is used for calculating the barycentric coordinates
and ancestry proportions. All 3-D points representing subjects being
checked are also projected onto the plane where DEFA is located. We
use numerical subscripts 1,2,3 in equations and subscripts E, F, A, when
referring to the triangle.

Weestimate the ancestryproportions for ancestries {E,F,A}, for each
subject using barycentric coordinates. Let (xi, yi) be the Cartesian co-
ordinates of subject i on the 2-D plane after transformation, and (xe, ye),
(xf, yf), (xa, ya) be the coordinates of the three vertices ofDEFA. Denote
matrix T as:

T ¼
0
@ 1  xe   ye

1  xf   yf
1  xa  ya

1
A

The barycentric coordinates (lie, lif,, lia) of subject i with respect to
DEFA are calculated using the following equations:

lie ¼

������
1  xi   yi
1  xf   yf
1  xa   ya

������
detðTÞ ; lif ¼

������
1  xe   ye
1  xi   yi
1  xa   ya

������
detðTÞ ; lia ¼

������
1  xe   ye
1  xf   yf
1  xi   yi

������
detðTÞ (5)

The ancestry proportions Pie, Pif, Pia are calculated using the following
equation:

Pim ¼ maxð0;   limÞ
maxð0;   lieÞ þmaxð0;   lif Þ þmaxð0;   liaÞ (6)

where Pim 2 fPie, Pif, Pia} and lim 2 flie, lif, lia}.
In GRAF-pop, we use the expectedD values calculated using Equa-

tion (3) to find the vertices of DEFA, and use it as the reference triangle
to calculate barycentric coordinates.When there aremissing genotypes,
we first calculate the barycentric coordinates using the SNPs with ge-
notypes, then map the coordinates onto the reference triangle when no
genotypes are missing. Specifically, we do the following steps to nor-
malize the genetic distances and plot the results:

1. For each subject group U 2{E, F, A}, calculate the expected genetic
distances DU1, DU2, DU3, to the first three reference populations,
using Equation (3) for the full set of 10,000 fingerprint SNPs.

2. Represent each group with a 3-D point in space by treating DU1,
DU2, DU3 as the x, y, z Cartesian coordinates. Build a triangle by
connecting the three points representing the three subject groups.

3. Rotate and translate the triangle so that it is in the plane z = 0, and
side FA is parallel to the x-axis. Denote this triangle as DEFA0, to
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be used as the reference triangle for calculating barycentric
coordinates.

4. Given a subject i, find the subset, T, of fingerprint SNPs with
genotypes for this subject.

5. For each subject group U 2{E, F, A}, calculate the expected ge-
netic distances DU1T, DU2T, DU3T, to the first three reference
populations using Equation (4) for subset T. Represent each
group with a 3-D point in the space.

6. Calculate the genetic distances Di1, Di2 and Di3 from subject i to
the first three reference populations. Represent subject i as a 3-D
point, Q, by treating Di1, Di2, Di3 as the x, y, z Cartesian
coordinates.

7. Build a triangle by connecting the three points representing the
three subject groups. Rotate and translate the three points, to-
gether with point Q, so that the triangle is in the plane z = 0.
Denote this triangle as DEFAT.

8. Using the x, y coordinates of point Q after transformation, cal-
culate the barycentric coordinates (lie, lif, lia) for subject i with
respect to DEFAT, using Equations (5) and (6).

9. Convert the barycentric coordinates back to the Cartesian coor-
dinates (xi0, yi0) using reference triangle DEFA0:

xi0 ¼   liexe0 þ   lif xf 0 þ   liaxa0

yi0 ¼   lieye0 þ   lif yf 0 þ   liaya0

where (xe0, ye0), (xf0, yf0), (xa0, ya0) are the Cartesian coordinates of
the three vertices of DEFA0.
10. Plot the converted Cartesian coordinates of subject i, together

with DEFA0, on the x-y plane. The final xi0, yi0 values are the
normalized genetic distances, called GD1 and GD2 scores in this
article and in GRAF.

11. The z coordinate of point Q after transformation (step 7), called
GD3 score, is also used for plotting results.

12. Calculate the genetic distances Di4 and Di5 from subject i to the
last two reference populations South Asian and Mexican/Latino.
The difference Di5 - Di4, called GD4 score, is plotted against GD1
scores to separate South Asians from Latin Americans.

A population ID is assigned to each subject based on the ancestor
proportions Pe, Pf and Pa, together with GD1 and GD4 scores. The
cutoff standards are described in Results.

Testing GRAF-pop in comparison with existing ancestry-
prediction software packages
We compared the performances and prediction accuracies between
GRAF-pop and existing software EIGENSTRAT (Price et al. 2006),
FastPCA (Galinsky et al. 2016), SNPweights (Chen et al. 2013), and
FlashPCA2 (Abraham et al. 2017) using the dbGaP studies listed in the
first subsection. The first three programs are included in the software
package EIGENSOFT 7.1.2 (https://www.hsph.harvard.edu/alkes-price/
software/).

Weextractedgenotypesof the10,000fingerprintSNPsandsaved them
into PLINK sets. We compared the performances of different software
packages using the dataset of phs000420.v6.p3, as well as the datasets
combined from two or three studies. Missing genotypes were retained in
somedatasets to evaluate the software packages in the presence ofmissing
genotypes. Since PCA results are displayed in different scales and direc-
tions by different PCA programs, PC1 and PC2 values generated by the
PCA software packages were normalized using the following method: 1)
Genotypes of theHapMap subjectswere combinedwith the datasets to be

tested, 2) PC1 and PC2 values were treated as the x, y coordinates, 3) The
centroids of the three HapMap populations CEU, YOR and ASN were
calculated and used as the vertices of the reference triangle DEFA as
mentioned above, 4) The barycentric coordinates with respect to DEFA
of all subjects were calculated, and converted back to Cartesian coordi-
nates using reference triangle DEFA0 as mentioned above, and 5) The
converted Cartesian coordinates were plotted on scatter plots.

Since GRAF-pop can also estimate the ancestry proportion for each
subject, like model-based approaches, we compared GRAF-pop with
ADMIXTURE (Alexander et al. 2009). Because ADMIXTURE requires
that no subjects in the dataset be closely related, we used GRAF (Jin
et al. 2017) software to find the related subjects and created a dataset
including only unrelated subjects to test the software tools.

Data Availability
Phenotypic andgenotypicdata required toconfirmthe results presented
in this study are available through thedbGaPAuthorizedAccessSystem,
with the following accessions: phs000050.v1.p1, phs000403.v3.p3,
phs000420.v6.p3,phs000456.v1.p1,phs000517.v3.p1, andphs000788.v1.pl.
Supplemental material available at FigShare: https://doi.org/10.25387/
g3.8061485.

RESULTS

Clustering dbGaP subjects and assigning subject
populations using GRAF-pop
As ofNovember 15, 2018, dbGaP includes data on 1,987,542 subjects in
1,276 studies and extracted fingerprint genotypes of 1,387,305 subjects
from 501 studies; 1,186,387 of these subjects in 478 studies have more
than 4,000 fingerprint SNPs genotyped (Table 1). The study-reported
populations were submitted to dbGaP as text strings. When non-
English characters, UPPER CASE/lower case and singular/plural dif-
ferences are ignored, there are 264 distinct values for populations.

We calculated GD1, GD2, GD3, GD4 scores and estimated ancestry
proportions for all subjects with fingerprint genotypes extracted. Figure
1 shows the scores of the 1,186,387 subjects with more than 4,000
fingerprint SNPs genotyped.

Figure 2 shows the distributions of GRAF-pop scores of eight
dbGaP study-reported populations: European, African (represented
by study-reported populations Ghana and Yoruba), East Asian (repre-
sented by Chinese and Japanese), African American (including Afri-
can), Latin American 1 (represented by Puerto Rican and Dominican),
Latin American 2 (represented by Mexican and Mexican American),
South Asian (represented by Asian Indian and Pakistani), and Asian-
Pacific Islander (including East Asian but not South Asian) . For each
population, 1,000 randomly selected subjects are plotted.

n Table 1 Distribution of numbers of fingerprint SNPs with
genotypes per subject in dbGaP

#Genotyped SNPs/Subject #Subjects

101-1000 161860
1001-2000 1209
2001-3000 30441
3001-4000 7408
4001-5000 369599
5001-6000 32640
6001-7000 12242
7001-8000 41849
8001-9000 19207
9001-10000 710850
Total 1387305
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In Figure 1, we can see that dbGaP subjects are separated into six
clusters by GD1, GD2 and GD4. On the GD2 vs.GD1 plots, three main
clusters at the vertices of the reference triangle, corresponding to con-
tinental populations European, African/African American, and Asian.
Below the European cluster, there are two clusters. The left cluster in
Figure 1 has more African components, and the location is correspond-
ing to that of the study-reported Latin American 1 in Figure 2. The right
cluster is located in the area where the study-reported South Asians,
and Latin American 2 are found in Figure 2. On the GD4 vs.GD1 plots,
the right cluster is separated into three sub-clusters: the top one corre-
sponds to South Asian and the bottom one to Latin American 2. The
middle sub-cluster is connected to the Asian-Pacific Islander cluster.
The Latin American 1, Latin American 2, and South Asian populations
are not homogeneous, so the tightness of the clustering is surprising.
We emphasize that the individuals sampled in Figure 2 represent the
study-reported populations in dbGaP, but may not comprise a repre-
sentative sample of these populations as a whole. Naturally, dbGaP staff
must check all submissions of data sets, and accept all submissions of
data sets that pass quality control, but it would be neither appropriate
nor possible (since any research group can submit data) for dbGaP staff
to check whether submitted data sets are representative. Analogously,
sequence databases maintained at NCBI have a gross excess of se-
quences from model organisms out of proportion with the diversity
of organisms on earth.

We assign each dbGaP subject a unique population ID using the
thresholds in Table 2 and Table 3. These simple cutoff lines, plotted in
Figure 1 using cyan lines, were set to be able to separate the clusters of
dbGaP subjects shown in Figure 1, and the ellipses that include 95%
subjects of populations shown in Figure 2. There are no clear separa-
tions between African (PopID 2) andAfrican American (PopID 4), and
between East Asian (PopID 3) and Asian-Pacific Islanders (not includ-
ing East Asian, PopID 7). Note that these GRAF-calculated popula-
tions, different from the eight study-reported populations used to
calculate the ellipse areas in Figure 2, are mutually exclusive. For ex-
ample, the GRAF-calculated Asian-Pacific Islander population does
not include East Asian or South Asian subjects, but in Figure 2, the
ellipse area of Asian-Pacific Islander includes subjects from both East
Asia and other Asia-Pacific regions.

The cutoff lines were determined empirically to aid in grouping the
dbGaP subjects.We sought to base the cutoff lines and curves on as few
parameters as possible, using the ancestry proportions and GD1-GD4.

These lines were selected based on the distribution of dbGaP subjects
with known study-reported populations on the GD spaces (Figures 1
and 2).When selecting these cutoff lines, we paid some special attention
to the ellipse areas that include 95% of the subjects with the eight
known populations. The lines are included in the GRAF software pack-
age as a suggested cutoff standard to assign subjects to populations.
Other users should only use cutoff lines, as well as the ellipses, as

Figure 1 GRAF-pop results of subjects with at least
4,000 fingerprint SNPs genotyped across 478 dbGaP
studies. (A, B) All subjects are plotted. (C, D) 10,000
randomly selected subjects are plotted. Cyan lines show
the cutoff standards suggested by GRAF-pop to assign
dbGaP subjects into GRAF-calculated populations.

Figure 2 Distribution of GRAF-pop scores of subjects with different
groups of study-reported population of subjects across 478 dbGaP
studies. Each ellipse in panel (A) shows the area including 95% of the
subjects for a certain study-reported population. Only 1,000 randomly
selected subjects are plotted for each population to avoid over-
plotting. Study-reported populations are grouped and harmonized.
The population Asian-Pacific Islander does not include South Asian
subjects.
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references to compare their own data with dbGaP. GRAF-pop users are
supposed to plot the GD scores and ancestry proportions calculated by
GRAF-pop and see how the subjects in their own data sets are clustered
in the GD space and then select their own standards to group the
subjects based on the purposes of data usage.

Table 4 shows the percentages of subjects, among those with $

4,000 fingerprint SNPs genotyped, assigned to different population
IDs for different study-reported populations. Table 4 includes the
94 study-reported populations with $ 100 subjects with $ 4,000 fin-
gerprint SNPs genotyped. We combined the study-reported popula-
tions andGRAF-assigned populations into five continental populations
and estimated the prediction accuracies of GRAF-pop.

Assuming the study-reported populations correspond to the expected
population based on genetic marker data, GRAF-pop correctly deter-
mined populations formore than 98%of European and 97%ofAsian and
African American subjects. The prediction accuracy for South Asian
subjects is also greater than 98%, but the number of subjects is small.
Approximately 98% of the Asian subjects were predicted by GRAF-pop
either as Asians or Asian-Pacific Islanders or South Asians. These
predictionswereconsistentsinceself-reportedAsianscanbeSouthAsians.
It was most difficult to predict the population of subjects reported as
“Hispanics”, or Latin Americans as the harmonized term, which is not
surprising considering the complex demographic history of Latin
America. Only 80% of study-reported Latin American subjects were pre-
dicted by GRAF-pop as Latin American 1 or Latin American 2. Most of
the remaining were classified as European, African, or Other, with a small
percentage (0.41%) reported by GRAF-pop as Asians or South Asians.

Study-reported populations are sometimes misassigned which
makes it difficult to use them to evaluate the performance of GRAF-
pop. Figure S1 shows the distributions of subjects with different study-
reportedpopulationsonGRAF-popscatterplots. Somesubjectswith the
same study-reported populations are separated by GRAF-pop into
several clusters. For example, Figure S1C shows that there is a small
cluster in the position near the centroid of Europeans for subjects with a
study-reported population of African. It is likely that these subjects are
EuropeansmisassignedasAfricans in thedbGaPsubmission.FigureS1E
andS1F shows subjects reported asAsians that are separated into several
clusters by GRAF-pop. The top cluster on Figure S1F is in the position
near the centroid of South Asian. It is understandable that South Asian
participants were reported by the study as Asians. However, the bottom
cluster is locatedwhere LatinAmericans are expected, therefore they are
most likelyalsomisassigned. IfGRAF-poppredictionsarecorrect, thena
possible explanation is that these study-reported populations were
estimated by data submitters using genotypes. When PCA is used to
infer ancestry and only the first two PC scores are used, it is difficult to
distinguish Latin Americans, South Asians and European/East Asian
admixtures from one another (see Figure 6B below).

The study-reported populations of the 1000 Genomes Project
(Clarke et al. 2012) individuals are more reliable. We used genotype
data of 2,504 individuals from 1000 Genomes as a test for GRAF-pop.
For HapMap defined “super populations” EUR, AFR, EAS, SAS (http://
www.internationalgenome.org/category/population/), the accuracies
are greater than 99% (Table 5). For the admixed population AMR,
more than 81% are predicted as Latin Americans. The super population
AFR includes two admixed populations from Americas: ASW (Amer-
icans of African ancestry in SWUSA) and ACB (African Caribbeans in
Barbados). If we exclude these two populations from AFR, then the
prediction precision of GRAF-pop in non-admixed continental popu-
lations is 100% (see Figures S2A and S2B).

Among 1.2 million dbGaP subjects with $4000 fingerprint SNPs,
about 76% are Europeans, and the percentages of African Americans,
Latin Americans and Asians are about 12%, 6% and 5%, respectively.

Populations of dbGaP subjects predicted by GRAF-pop
for each dbGaP study
For each dbGaP studywith genotype data submitted, we useGRAF-pop
to estimate subject populations and display the results on the study
report page within the dbGaP web site. As an example, Figure 3 shows
population reports generated by GRAF-pop for study phs000788.v1.

The study phs000788.v1 is a multi-ethnic study with 78,419 geno-
typed subjects with an average of 4,259 fingerprint SNPs genotyped per
subject. Most subjects are reported as having one of four populations:
White, Asian, Hispanic, or Black. Figure 3A shows that most of the
subjects are within the areas expected. Each panel G-I plots subjects
with one study-reported population. Panel G indicates that some of the
study-reported Asians have mostly European backgrounds. The cluster
between the European and Asian vertices most likely contains individ-
uals who have both European and Asian ancestry. The subjects within
the South Asian expected area are probably South Asians reported as
Asians by the data submitter. Figure 3B shows the graph after it is
rotated around the bottom of the triangle by 90�; i.e., the GD3 values
are shown on the y-axis. Hispanics are separated from European/Asian
admixtures in the rotated graph. Figure 3C plots GD4 values on the
y-axis. Study-reported Hispanics are almost completely separated from
Asians, including East Asians, European/Asian admixtures, and South
Asians. Panels D-F color code the subjects by populations computed by
GRAF-pop. The black lines are the cutoff lines to separate different
populations. Figure 3F shows that the cluster of study-reported Asians
near the expected area for Europeans is composed of South Asians.

Different numbers of fingerprint SNPs are genotyped across
dbGaP studies. We selected studies with fingerprint SNPs ranging
from fewer than 200 to almost all 10,000 SNPs. Figure 4 shows the
population reports generated by GRAF-pop and displayed on
dbGaP webpages for these studies. European subjects are restricted
in a small area if there are more than 2,000 fingerprint SNPs gen-
otyped. The subjects become more widely spread out when there are
fewer than 1,000 SNPs genotyped. Roughly 150 fingerprint SNPs
genotyped suffice to separate the three main populations (European,
African American, and Asian).

n Table 2 Populations assigned by GRAF-pop based on the
estimated ancestry proportions

PopID Population Cutoff standard

1 European Pe $ 87%
2 African Pf $ 95%
3 East Asian Pa $ 95%
4 African American 40% # Pf , 95% and Pa , 13%
5 Latin American 1 Pf , 40% and Pe , 87% and

Pa , 13% and Pf $ Pa
6,7,8 (Three populations) Pa , 95% and Pe , 87% and

Pf , 13% and Pf , Pa
9 Other Pa $ 13% and Pf $ 13%

n Table 3 Separating Asians and Hispanics using GD1 and GD4
scores

PopID� Population Cutoff standard

7 Asian-Pacific Islander GD1 . 30 · (GD4)2 + 1.73
8 South Asian GD4. 5 · (GD1 -1.69)2 + 0.042
6 Latin American 2 GD4 , 0 and PopID is not 7
� PopID: ID of population computed by GRAF-pop.
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Comparing GRAF-pop to other software tools
We compared performance of GRAF-pop to EIGENSTRAT, FastPCA,
and SNPweights included in the EIGENSOFT 7.2.1 package (https://
www.hsph.harvard.edu/alkes-price/software/), as well as FlashPCA2
(https://github.com/gabraham/flashpca, version 2.0). We used data
from the following five dbGaP studies to test these programs:
phs000050.v1.p1, phs000403.v3.p3, phs000420.v6.p3, phs000456.v1.p1
and phs000517.v3.p1. These studies include subjects of all continental
populations, and genotype datasets covering both large (.80%) and
small (,5%) portions of the fingerprint SNPs. The 270 subjects of
phs000050 were from HapMap Phase I and were genotyped using
the PERLEGEN-600K platform. We used HapMap data as a cross-
dataset positive control because the population assignments are reliable
and have been used to test other ancestry inference software.
Phs000420 (NHLBI MESA SHARe) is a sub-study of the Multi-Ethnic
Study of Atherosclerosis (MESA) Cohort (phs000209.v13.p3) with
8,295 subjects genotyped using the AFFY_6.0 platform. Phs000403
(NHLBI GO-ESP) is another sub-study of MESA, with genotypes
obtained using exome sequencing platform Genome Analyzer IIX for
404 subjects. Phs000456 (Risk Assessment of Cerebrovascular Events
(RACE) Study) contains 2,493 Pakistani subjects, and phs000517 (Mul-
tiethnic Cohort (MEC) Breast Cancer Genetics) includes 3,708 subjects
with study-reported populations Black or African American, Latino
and Japanese. Both RACE and MEC Breast Cancer studies genotyped
subjects using the platformHuman660W-Quad_v1_A. Table S2 shows
a summary of the five selected studies. For NHLBI MESA SHARe, we
combined study-reported populations “African American”, “Black”,
and “Black, African-American” into “African American”, and we com-
bined “White, Caucasian” and “European American” into “European
American”.

We extracted the genotypes of the 10,000 fingerprint SNPs and
filtered out SNPs with genotype missing rates greater than 90%. Two
PLINK sets were created to compare the software tools. The first dataset
contains combined genotypes from HapMap, NHLBI GO-ESP and
NHLBIMESA SHARe. It consists of genotypes of 3,343 SNPs and 8,898
subjects; the counts of subjects from HapMap, NHLBI GO-ESP and

NHLBI MESA SHARe are 270, 404 and 8224, respectively. While
subjects of HapMap and NHLBIMESA SHARe have genotype missing
rates , 0.1%, the NHLBI GO-ESP subjects have genotype missing
rate. 95%, which is useful to test the software tools when the genotype
missing rates are high. The second dataset was generated by combining
genotypes of HapMap, RACE Study and MEC Breast Cancer, contain-
ing genotypes of 7,970 SNPs and 6,616 subjects, with genotype missing
rate , 5% for all subjects.

Wedeliberately chose to show theperformanceofGRAF-popon real
individual data sets in dbGaP, rather than on blended or simulated data
sets. The decision to use individual data sets refleects the reality of the
quality-control process. Each data set is idiosyncratic and each sub-
mitting group may use different procedures to assign study-reported
populations andmaymakeunique errors inmanaging data. Some of the
systematic submitter errors that GRAF-pop has detected would have
been quite unrealistic to simulate.

Figure 5 shows results from SNPweights, EIGENSTRAT, and
GRAF-pop using the first dataset. Comparing the normalized results
of EIGENSTRAT (Figure 5D) and those of GRAF-pop (Figure 5E), we
can see that both methods can separate the continental populations
from one another well, when genotype missing rates are low. The
resolutions of EIGENSTRAT and GRAF-pop are similar, and both
are much higher than the resolution of SNPweights (Figure 5A-B).

When genotype missing rates are high, as in NHLBI GO-ESP,
EIGENSTRATdid not determine the populations correctly. All subjects
fromNHLBIGO-ESP,bothEuropeanAmericansorAfricanAmericans,
were placednear the center (Figure 5C-D). Similar results were obtained
by running EIGENSTRAT with option lsqproject. SNPweights put
these subjects in widely spread areas, with centroids of EuropeanAmer-
icans and African Americans far from the centroids of the same pop-
ulations in other studies (Figure 5A-B). Only GRAF-pop could clearly
separate African Americans from European Americans, and the cen-
troids of these two populations were close to those from other studies
(see the two small triangles pointed by black arrows in panels B, D, E).

Figure 6 compares the results of EIGENSTRAT and GRAF-pop on
the combined dataset of HapMap, RACE Study and MEC Breast Can-
cer. Panels A-C show that study-reported Europeans, African Ameri-
cans, Asians, and Hispanics can be well separated from one another
using PC1 and PC2, or the GD1 and GD2 scores of GRAF-pop. The
resolutions of these two programs were close. However, South Asians
(Pakistanis in this test) could not be well separated from Hispanics.
Figure 6D shows that South Asians could be separated from Hispanics
using PC3 of EIGENSTRAT. Similarly, Figure 6E shows that these two
populations could be distinguished from each other using the GD4
scores of GRAF-pop.

We also tested FastPCA and FlashPCA2. For all the datasets tested,
FastPCA and FlashPCA2 generated results almost identical to EIGEN-
STRAT, which is not surprising since they all use PCA.

n Table 4 Prediction accuracies (%) of GRAF-pop for continental populations

Study-reported
population #Subjects

GRAF-pop assigned population

European African Asian Latin American 1 Latin American 2 South Asian Other

European 519731 98.28 0.12 0.06 0.46 0.69 0.02 0.37
African 94366 0.35 97.46 0.02 1.49 0.13 0.06 0.50
Asian 30946 0.33 0.03 93.07 0.06 0.97 4.62 0.92
Hispanic 39975 8.30 6.21 0.40 13.26 66.94 0.02 4.88
South Asian 4109 0.10 0.10 0.05 0.34 0.00 98.27 1.14
Total 1186387 74.62 12.10 5.54 1.62 4.45 0.72 0.96

Note: Entries in bold are considered correct predictions for the broad classification shown. Here, African means PopID 2 or 4 and Asian means PopID 3 or 7. See
Figure S1 for distributions of subjects with different study-reported populations on GRAF-pop scatter plots.

n Table 5 Prediction accuracies (%) of GRAF-pop using data of
1000 Genomes Project

1000
Genome
Population European African Asian

South
Asian

Latin
American Other

EUR 100.0 0.0 0.0 0.0 0.0 0.0
AFR 0.0 99.2 0.0 0.0 0.2 0.6
EAS 0.0 0.0 100.0 0.0 0.0 0.0
SAS 0.0 0.0 0.0 99.0 0.0 1.0
AMR 6.1 0.9 0.0 0.0 81.6 11.5
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We compared the running times of these software tools on an Intel
Xeon machine with 16 2.67 GHz CPUs using the combined dataset of
HapMap, NHLBI GO-ESP and NHLBI MESA SHARe (8,898 individ-
uals). The running times were: FlashPCA2, 8 sec; FastPCA, 22 sec;
GRAF-pop, 75 sec; SNPweights, 9 min; EIGENSTRAT, 94 min. Only
3,343 SNPs with low genotypemissing rates are included in the dataset.
FlashPCA2 and FastPCAonly need to analyze genotypes of these SNPs,
but GRAF-pop checks genotypes of all 10,000 fingerprint SNPs.

We also compared GRAF-pop with the widely-used, model-based
method ADMIXTURE (v.1.3.0, http://software.genetics.ucla.edu/
admixture/download.html). The above first dataset containing com-
bined genotypes from HapMap, NHLBI GO-ESP and NHLBI MESA
SHARe was used for testing ADMIXTURE. Since many of the
14,003 subjects in the dataset are closely related, the data set had
to be reduced to meet ADMIXTURE’s requirements. We used our
GRAF software to create a subset of data of 6,974 subjects, among
which no two subjects are closely related (i.e., with HGMR, 15%).
ADMIXTURE was run using option k = 3. It converged in 36 iter-
ations with running time 139 sec. GRAF-pop spent 36 sec to calcu-
late the results. Figure 7 shows that the results obtained using
ADMIXTURE and GRAF-pop are very similar, including the

NHLBI GO-ESP subject with very high genotype missing rates. Both
methods can easily cluster the non-admixed populations correctly.
Out of the 1,410 subjects with study-reported population Hispanic,
74 and 6 subjects are determined to be Europeans and Asians, re-
spectively, by GRAF-pop using the default cutoff values. For those
subjects, very high European (86%) and Asian (87%) ancestry pro-
portions are also predicted by ADMIXTURE.

Applying GRAF-pop in dbGaP curation
During development, GRAF-pop was used informally to harmonize
population values for searching and as a quality control tool to check
study-reported populations in newly submitted dbGaP studies. Advice
from curators aided improvements to the visualization tools illustrated
in the Figures. Since February 2018, GRAF-pop has been used formally
to check the genotype data and population assignments before eachnew
study is publicly released by dbGaP.

Populations predicted by GRAF-pop and those reported in the
submitted files are displayed and compared on a webpage for curators
and submitters to use to find potential errors in the phenotype and
genotype files. The page also highlights missing information to be filled
in before the submission is complete.

Figure 3 Subject populations determined by GRAF-pop for dbGaP study phs000788.v1: Research Program on Genes, Environment and Health
(RPGEH). Each subject has 4028 – 5872 (average 4239) fingerprint SNPs with genotypes. In panels (A-C) and (G-I), study-reported populations are
color coded. In panels (D-G), GRAF-calculated populations are color coded. Black cutoff lines are the same as those in Figure 1. Each ellipse
shows the area including 95% of the subjects for a study-reported population European, African American, Asian-Pacific Islander, or Latin
American 2, same as in Figure 2. Total 78,419 subjects with the following study-reported populations are plotted: White: 65,540 subjects; Asian:
5,510; Hispanic: 4,641; Black: 2,183; Other 545.
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Below is an example URL for one of these webpages:
https://www.ncbi.nlm.nih.gov/projects/gap/population/cgi-bin/

StudySubjectAncestry.cgi?phs=420&version=6&exp1=1&exp2=1&exp3=1
Our expectation has been that GRAF-pop would catch omissions

and errors in submitters’ assignment of subject populations. GRAF-pop
has already also identified some inconsistencies in the content of
PLINK-formatted genotype files. GRAF-pop can flag files that have a
syntactically valid PLINK format, but have incorrect marker assign-
ments, which leads to unexpected GRAF-pop predictions of subject
population.

DISCUSSION
PCA is a linear algebraic method applied in many scientific disci-
plines (Jolliffe and Cadima 2016), and has long been used to analyze
genetic data (Menozzi et al. 1978). Since the development of
EIGENSOFT (Patterson et al. 2006; Price et al. 2006), the use of
PCA has become central to many ancestry inference methods.

However, PCA has two important limitations when applied to an-
cestry inference.

One limitation is that PCA is a dimensionality reduction method
without a statistical model. Mcvean (2009) has shown that PCA scores
give an accurate representation of the parameters of the coalescent
process. However, PCA scores do not have physical meaning. They can
only be used to separate individuals within the dataset being analyzed
(Lee et al. 2010), and therefore, cannot be generalized across datasets.
Recent methods, such as SNPweights (Chen et al. 2013) and FastPop
(Li et al. 2016) mitigate this limitation by using reference panels as well
as algorithmic steps before and after PCA.

The second limitation is that PCA has difficulty with missing data
(Stanimirova et al. 2007). Most of the existing PCA ancestry inference
approaches filter out individuals and SNPs with missing rates greater
than some threshold, usually 5%or 1%.Missing values remaining in the
datasets are then replaced with the mean value (Price et al. 2006; Chen
et al. 2013; Li et al. 2016; Byun et al. 2017), which shifts individuals

Figure 4 GRAF-pop results of dbGaP studies with different numbers of fingerprint SNPs genotyped. Each panel shows result of one dbGaP study.
Study-reported populations are color coded. Each ellipse shows the area including 95% of the subjects for a study-reported population European,
African American, Asian-Pacific Islander, same as in Figure 2. (A) Study accession: phs000169.v1. White: 1,663 subjects. Black: 1,139. (B)
phs000944.v1. White: 4,132. Black: 2,665. Asian: 81. (C) phs001306.v1. White: 9,695. (D) phs000281.v8. White: 1,020. Black: 884. (E) phs000918.v1.
White: 11,402. (F) phs000948.v1. White: 1,786. Black: 49. Asian: 69. From Panels (A) to (F), the average fingerprint SNPs with genotypes per subject
are: 9982, 5072, 2040, 471, 244, and 157, respectively.
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toward the centroid in the scatter plot generated by PCA. Li et al.
noticed that false populations were reported by FastPop when samples
with genotype missing rates higher than 5% were included (Li et al.
2016).

To infer thepopulationassignment fordbGaP subjects genotypedon
various platforms, we have developed an inference method named
GRAF-pop to improve quality control in curation, and harmonize
subject population values across studies. It uses a distance-based ap-
proach that overcomes these two limitations of PCA. Instead of com-
paring an individual’s genotypes with those of other individuals in the
dataset being analyzed, GRAF-pop compares the individuals to fixed

sets of reference panels with known populations. Since the number of
human populations at a coarse level is limited, the genetic distance data
generated by GRAF-pop is low-dimensional, and PCA is not necessary.
GRAF-pop utilizes dbGaP subjects with known populations as refer-
ences. Due to the paucity of Native American samples, we calculate the
genetic distances to three reference continental populations: European,
African, and Asian, and obtain results of data in 3D. By projecting the
initial prediction onto the fixed EFA triangle, GRAF-pop produces
results that can be generalized across different datasets. Figure 5 and
Figure 6 show that the GRAF-pop GD2 vs. GD1 plots, which show the
EFA projection, separate continental populations from one another

Figure 5 Results generated by applying SNPweights, EIGENSTRAT and GRAF-pop on the combined dataset of phs000050.v1 (HapMap),
phs000403.v3 (NHLBI GO-ESP) and phs000420.v6 (NHLBI MESA SHARe) to infer subject ancestry. Average number of SNPs with genotypes per
subject in the test data set: HapMap and NHLBI MESA SHARe: 3,433; NHLBI GO-ESP: 160. For ease of comparison, SNPweights and
EIGENSTRAT results are plotted on the three-population triangle as explained in Methods. (A) SNPweights, PC2 vs. PC1. (B) SNPweights, after
normalization onto the GRAF-pop results. (C) EIGENSTRAT, PC2 vs. PC1. (D) EIGENSTRAT, after normalization. (E) GRAF-pop, GD2 vs. GD1. The
two small triangles on Panels (B, D, E), each of which is pointed by a black arrow, show the centroids of the subject locations of the two study-
reported populations in NHLBI GO-ESP predicted by each software tool: blue triangle for European, brown for African American. Since the
subjects in NHLBI GO-ESP have very high genotype missing rates, these centroids indicate whether a software tool can estimate subject ancestry
unbiasedly in the presence of missing genotypes.

Volume 9 August 2019 | GRAF-pop for Ancestry Inference | 2457



almost as well as the PC2 vs. PC1 plots, which show the PCA 2D
projection to the plane of the first two PCs. Using the EFA triangle,
we can also estimate the ancestral proportions by calculating barycen-
tric coordinates.

Barycentric coordinates were developed by August Ferdinand
Möbius (1790-1868) in his book “Der barycentrische calcul” (1827)
(Ungar 2010). Nowadays, Möbius is better known for discovering the
non-orientable three-dimensional shape known as the Möbius strip,
which has been cut in three pieces and stylized into the universal
symbol for recycling. In that spirit, our work recycles the technique
of barycentric coordinates for application to ancestry inference. Read-
ers may have seen barycentric coordinates used in computer graphics
and animation to interpolate colors over any convex shape and to de-
form shapes smoothly, and for other applications (Warren et al. 2007;
Skala 2008; Weber et al. 2009).

For a triangle on a 2D plane, barycentric coordinates solve the
following problem: given a point, p, inside the triangle, find the

unique masses of three objects summing to 1 such that when they
are placed on the three vertices, p is the center of mass. Applying
barycentric coordinates to the EFA triangle and treating the mass
proportions as the ancestral proportions, we can estimate the pop-
ulation components for each individual based on the projection of
that individual’s distance data relative to the vertices of the reference
triangle.

Both SNPweights (Chen et al. 2013) and FastPop (Li et al. 2016)
estimate subject ancestral proportions using distances from the subject
to the centroids of reference populations. Surprisingly, these two meth-
ods give two different algebraic solutions. In each paper, the necessary
algebra is shown, but without any justification or comparison to the
alternative. One of our contributions is to point out that the method of
SNPweights has a natural geometric interpretation as barycentric coor-
dinates. Usage of barycentric coordinates allows GRAF-pop to charac-
terize other populations beyond E, F, A, geometrically (see Results),
unlike SNPweights and FastPop.

Figure 6 Results generated by applying EIGENSTRAT and GRAF-pop on the combined dataset of phs000050.v1 (HapMap), phs000456.v1 (Risk
Assessment of Cerebrovascular Events (RACE) Study) and phs000517.v3 (Multiethnic Cohort (MEC) Breast Cancer Genetics) to infer subject
ancestry. 7,790 SNPs are included in the test data set, with genotype missing rate less than 5% for each subject. (A) EIGENSTRAT, PC2 vs. PC1. (B)
EIGENSTRAT, PC2 vs. PC1, after normalization. (C) GRAF-pop, GD2 vs. GD1. (D) EIGENSTRAT, PC3 vs. PC1. (E) GRAF-pop, GD4 vs. GD1.
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GRAF-popalsousesbarycentric coordinates to treat themissingdata
problem. By using reference panels, GRAF-pop can infer ancestry
proportions for individuals independent of others in the dataset. In
contrast to SNPweights and FastPop, which require that the same SNPs
be genotyped in all target individuals, GRAF-pop does not need to

impute missing data. GRAF-pop simply skips the SNPs without geno-
types.When the average genetic distances from individuals in each vertex
subpopulation to the reference population are available for the subset of
genotyped SNPs, then barycentric coordinates can be calculated using
thesemean distances as the reference triangle. Expectedmean values for a

Figure 7 Comparison of population structure determined using ADMIXTURE and GRAF-pop. The data set tested contains genotypes of 3,433
well separated SNPs and 6,794 unrelated subjects from dbGaP studies HapMap, NHLBI MESA SHARe and NHLBI GO-ESP. Subjects from NHLBI
GO-ESP have average 160 SNPs with genotypes, while subjects from the other two studies have average genotype missing rate, 0.1%. Each bar
represents one subject, and results of same subject are plotted on the same horizontal position to compare the two software tools. For NHLBI
MESA SHARe, only about 40% randomly selected subjects are plotted. Three colors are used to represent the three ancestry components: light
purple: European; purple: African; mid blue: East Asian.
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subject group can be predicted using the allele frequencies of the group,
for any combination of SNPs. We use the expected mean genetic dis-
tances from the three subject groups to the three reference populations to
build the reference triangle. The GD2 vs. GD1 scatter plots of ancestry
results of dbGaP studies calculated using GRAF-pop (e.g., Figure 4 and
Figure 5) confirm that the centroid of each population remains nearly
unaffected when different numbers of SNPs are missing.

GD1andGD2separate continental populations (European,African/
African American, Asian-Pacific Islander) from one another (Figures
2A). Latin Americans comprise an admixed population with genetic
contributions from European, African and/or Native American popu-
lations. Most subjects self-described as “Hispanics” or “Latinos” in the
United States either have large proportions of European and Native
American components, or European and African components (Bryc
et al. 2010; Bryc et al. 2015). Ancestry inference usingGRAF-pop shows
similar results. On the GD2 vs. GD1 plots, study-reported Hispanics
and Latinos form two sweeping clusters (Figures 2, 3): one with more
African proportion (labeled Latin American1 by GRAF-pop) than the
other (labeled Latin American2).

The following three admixed populations are more difficult to distin-
guish: LatinAmerican2, SouthAsian, and individuals experiencing recent
European/East Asian admixture. On the GD2 vs. GD1 graph, they show
up roughly in the same region of the graph. These populations can be
separated by GD4, which is the difference of the genetic distances from
each individual to the reference populations of Latin American 2 and
SouthAsian (Figures 1-2). Although not normalized, GD4 is not sensitive
to non-random missing genotypes. Indeed, any such difference of two
genetic distances with two reference populations can be rewritten as:

Dij 2Dik ¼ 2
1
S

XS
l¼1

�
gil   ln

�
pjl
pkl

	
þ ð22 gilÞln

�
qjl
qkl

	

(7)

Note that the last term in Equation (2) cancels in the subtraction since
the subject genotype gil is the same no matter what reference popu-
lation is used. Only the ratios of the allele frequencies are used for
calculating the difference, and hence the genetic distance differences
are robust against missing data.

GRAF-pop has been used by dbGaP curators and submitters as a
quality assurance tool, and to generate displays of the ancestry inference
results to potential requestors of the data. For example, on the study
report page of phs000001.v1.p1: https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000001.v1.p1, there is an “Ancestry
Component” link that opens the webpage showing GRAF-pop results:

https://www.ncbi.nlm.nih.gov/projects/gap/population/cgi-bin/
StudySubjectAncestry.cgi?phs=1&version=1&exp1=1&exp2=1&exp3=1.
These displays can call attention to unusual results, e.g., abnormal data
distributions that manifest as discordance between study-reported pop-
ulations and those reported by GRAF-pop.

Two limitations of the current implementation ofGRAF-pop are: 1) it
relies on the10,000dbGaPfingerprint SNPs,whichwere selected forother
purposes (Jin et al. 2017) and 2) only five reference populations are used
to calculate the genetic distances, and these do not include Native Amer-
ican. After applying GRAF-pop to hundreds of dbGaP studies, we no-
ticed that about 2,000 fingerprint SNPs are needed to obtain good
resolution in separating continental populations. Figure 4 shows some
examples.When fewer than 1,000 fingerprint SNPs have genotypes, PCA
tools such as EIGENSTRAT will perform better than the current version
of GRAF-pop, since they can use all available SNPs in the data sets,
although some SNPs within linkage disequilibrium (LD) regions might
need to be pruned. Missing data can be imputed if possible. However,

GRAF-pop introduces a new method of inferring ancestry that does not
use PCA. In the future, we would like to improve the software usingmore
SNPs. Theoretically, GRAF-pop can be implemented using all the vari-
ants in the whole genome, so that all SNPs available in any given data set
can be used to do ancestry inference. Similar LD-pruning can be done for
GRAF-pop as for PCA. However, imputation would not be needed no
matter how many genotypes are missing in the data sets. Therefore, we
did not and will not try to do imputation for the current and future
versions of the GRAF-pop software.

We also would like to improve GRAF-pop by using more reference
populations, especially Native American. Some researchers tried to estimate
allele frequencies ofNativeAmericans (Gravel et al. 2013).When these allele
frequencies become available, we can use the centroid of Native Americans
as a fourth vertex to build a tetrahedron instead of the EFA triangle, and
continue to use barycentric coordinates to estimate ancestry proportions.

Most existing ancestry inference methods analyze genotypes as “un-
supervised inference”. Some investigators have developed methods that
instead include “supervised analyses”, making use of genotype data of
individuals with known ancestral histories (Alexander and Lange 2011).
Some methods, including GRAF-pop, do not require that the raw ge-
notypes in the reference panels be publicly available. Instead, only the
allele frequencies or pre-computed SNP weights of the reference panels
are needed to infer ancestry (Chen et al. 2013; Bansal and Libiger 2015;
Li et al. 2016), which increases efficiency. As stated by Bansal and
Libiger, the accuracies of these methods depend on the availability of
accurate allele frequencies for reference populations. Large public data-
bases and genotyping consortia will participate in creating future refer-
ence panels that will enable improvements in GRAF-pop.
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