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ABSTRACT Macrophages are key players involved in numerous pathophysiological pathways and an
in-depth characterization of their gene regulatory networks can help in better understanding how their
dysfunction may impact on human diseases. We here conducted a cross-species network analysis of
macrophage gene expression data between human and mouse to identify conserved networks across both
species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms.
From a sample of 684 individuals processed for genome-wide macrophage gene expression pro�ling, we
identi�ed 27 groups of coexpressed genes (modules). Six modules were found preserved (P , 1024) in
macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was signi�cantly
[false discovery rate (FDR) = 8.9 · 10211] enriched for genes belonging to the oxidative phosphorylation
(OXPHOS) pathway. This pathway was also found signi�cantly (FDR , 1024) enriched in susceptibility genes
for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait
loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This
analysis identi�ed the PARK2 rs192804963 as a trans-acting variant in�uencing (minimal P-value = 4.3 ·
1028) the expression of most OXPHOS genes in humans. Further experimental work demonstrated that
PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human
macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks
associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans
regulator of OXPHOS gene macrophage expression in humans.
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Macrophages play critical roles in several human physiological process-
es, including atherosclerosis (Madamanchi et al. 2005), in�ammation
(Akira et al. 2013), insulin resistance (Jacobi et al. 2012), oxidative
phosphorylation (Tavakoli et al. 2013), and pathogen clearance
(Murray and Wynn 2011). As a consequence, their uncontrolled dys-
function has been associated with various human diseases, such as
autoimmune disorders (Casanova and Abel 2009; Nathan and Ding
2010), Alzheimer disease (Saresella et al. 2014), coronary artery disease
(Ghattas et al. 2013), obesity (Jacobi et al. 2012), and type 2 diabetes

(Eguchi and Manabe 2013; Van Gassen et al. 2015). Despite intensive
research, the mechanisms of macrophage activation and regulation,
and their impact on disease susceptibility, are not fully understood; a
prerequisite for devising ef�cient therapeutic strategies oriented toward
the aforementioned diseases. A possible strategy to uncover novel path-
ophysiological roles for genes within speci�c cell types is to assess the
impact of genetic variations on transcript abundance (i.e., gene expres-
sion) and map the results to disease-associated loci (Chen et al. 2008;
Fairfax and Knight 2014). In addition, gene expression network and
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gene annotation enrichment analyses may identify highly coregulated
genes and reveal new partners of physiopathological interest
(Subramanian et al. 2005; Schadt 2009; Rotival et al. 2011). This ap-
proach may be conducted across different species to achieve deeper
understanding of regulatory mechanisms and reveal novel gene func-
tions (Oldham et al. 2006; Miller et al. 2010; Hansen et al. 2014) and
may be integrated within ef�cient multilayers or a systems biology
approach (Bunyavanich and Schadt 2015).

Here we used a system biology approach to better understand regu-
latory mechanisms in human and mouse macrophages. To reduce the risk
of focusingonspuriousor irrelevantnetworks,wecheckedthenetworks(or
modules) identi�ed in human macrophages in mouse macrophages. The
rationale of this approach was that gene coexpression networks that are
conserved across both species are more likely to re�ect key biological
functions (Hansen et al. 2014). Gene annotation enrichment analysis was
then performed on the identi�ed modules to assess whether they corre-
spond to physiopathologically relevant functions or pathways. Finally,
using genome-wide single nucleotide polymorphism (SNP) data, we iden-
ti�ed genetic variants in�uencing gene expression within conserved mod-
ules. Our speci�c aim was to identify trans-acting SNPs that affect the
transcriptome of conserved modules, as these variants may reveal the
existence of master regulator genes with pleiotropic effects.

MATERIALS AND METHODS
This work relied on two genome-wide macrophage expression re-
sources, one performed on human samples from the Cardiogenics
Transcriptome Study (CTS) and the second on mice from the Hybrid
Mouse Diversity Panel. The methodologies used for obtaining and
processing CTS data have been previously described in detail (Rotival
et al. 2011; Charchar et al. 2012; Garnier et al. 2013). The present work
was based on the analysis of 684 individuals with macrophage gene
expression. Mice expression data were obtained from 86 mice, of which
the extraction and preprocessing analyses have been extensively de-
scribed in Orozco et al. (2012).

Macrophages isolation and RNA extraction (human)
Macrophages were derived -monocytes. Monocytes were isolated
from whole blood positive selection with CD14 microbeads (Miltenyi)
according to the manufacturer’s instructions. Monocyte purity was
measured as the percentage of CD14+ cells analyzed by �ow cytometry.
Macrophages were obtained from culturing of monocytes for 7 d in
macrophage-SFM medium (Gibco/Invitrogen) with 50 ng/ml21

recombinant human M-CSF (R&D Systems). RNA was extracted
from both monocytes and macrophages with TRIzol, followed by
clean-up with RNeasy columns (Qiagen, Venlo, The Netherlands)
and DNase-based treatment (Charchar et al. 2012).

Human expression data
Geneexpression pro�lingwas performedusing Illumina’s HumanRef-8
Sentrix Bead Chip arrays (Illumina, San Diego, CA) containing 24,516

probes corresponding to 18,311 distinct genes and 21,793 RefSeq
annotated transcripts. mRNA was ampli�ed and labeled using the
Illumina Total Prep RNA Ampli�cation Kit (Ambion, Austin, TX).
After hybridization, array images were scanned using the Illumina
BeadArray Reader, and probe intensities were extracted using the
Gene expression module (version 3.3.8) of Illumina’s Bead Studio
software (version 3.1.30). Expression signals were background cor-
rected using GenomeStudio software. Probes were included in the anal-
ysis if their expression was considered detected (Illumina detection P ,
0.01) in at least 90% of samples. After removing nonwell-characterized
probes, a total of 15,539 probes corresponding to 12,502 distinct genes
remained for the analysis. Variance stabilization transformation was
applied to the raw intensities and quantile normalization was done in
the R statistical environment with the Lumi package (Lin et al. 2008; Du
et al. 2008). Principal variance components analysis was used to iden-
tify main factors contributing to the variability of expression data.
Given the strong in�uence of the variables center, sample batches, date
of hybridization, and microarray, we performed an adjustment on
these factors using the function Combat implemented in the sva R
package (Leek et al. 2012).

Human genotype data
CTS participants were typed for genome-wide genotype data using the
Human Custom 1.2 M and the Human 610 Quad Custom arrays from
Illumina. SNPs with genotyping call rate , 99%, minor allele frequency
(MAF) , 0.01, or showing signi�cant (P , 1025) deviation from
Hardy–Weinberg equilibrium were �ltered out. This led to 506,290 qual-
ity control (QC)–validated autosomal SNPs. Individuals were excluded
according to the following criteria: genotyping rate , 95% close related-
ness as suspected from pairwise clustering of identity by state distances
and multidimensional scaling implemented in PLINK (Purcell et al.
2007), and genetic outliers of non-European ancestry detected by prin-
cipal components analysis as implemented in the EIGENSTRAT pro-
gram (Price et al. 2006). The 506,290 QC-checked SNPs were then used
for imputing 11,672,179 autosomal SNPs from the 1000 Genomes
February 2012 release reference dataset. For this, MACH (version 1.0.18.c)
software was used (Li et al. 2010). All SNPs with acceptable imputation
quality r2 . 0.3 (Johnson et al. 2013) and imputed MAF . 0.01 were
kept for genotype-expression association analysis (N = 8,989,527).

Macrophage mouse expression study
Macrophages were primary intraperitoneal macrophages in control
conditions, isolated and processed as in Orozco et al. (2012).

Total RNA extracted from 86 strains was pro�led with Affymetrix
Mouse Genome HT MG-430A arrays. The image data were processed
using the Robust Multichip Average method to determine the hybrid-
ization signal for each gene. A total of 17,962 probes corresponding to
12,242 genes were available for further analysis.

Mouse genotyping
Mouse inbred strains were genotyped using the Mouse Diversity
Array, which contains probes for 623,124 SNPs (Yang et al. 2009).
After �ltering the SNPs for MAF , 5% and genotype missingness
rate , 5%, 205,539 SNPs remained for association testing.

Data combination
Human and mouse macrophage gene expressions have been prepro-
cessed separately, as described above. The probe-level measurements
were converted into gene-level measurements in both datasets to allow
comparison across different platforms.The probe within a gene that had
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the maximum average expression across samples was used to rep-
resent that gene. In order to compare gene expressions between the
different species, the ENSEMBL Gene ID was used to derive mouse
orthologous to human genes. The result of this step was an overall of
7890 genes commonly expressed in human and in mouse gene
expression datasets.

Human and mouse macrophage samples were clustered separately,
basedon theirEuclidiandistance todetectoutlierobservations.A total of
19 human and 7 mouse samples were removed as outliers for further
analysis.

From the 665 (= 684 2 19) CTS individuals analyzed for their ex-
pression data, 576 individuals also had QC genome-wide genotype data.

Gene coexpression network construction for
human macrophages
A weighted gene coexpression network analysis (WGCNA) was con-
ducted on the human macrophage expression dataset, composed of
7890 genes and 665 samples, to identify modules of coexpressed genes.
To construct the network, the absolute values of correlation coef�cients

[biweight midcorrelation Zheng et al. (2014)] were calculated for all
possible gene pairs. Values were entered into a matrix, and the data
were weighted into an adjacency matrix such that it followed an ap-
proximate scale-free topology (estimated b power = 5). Finally, the
topological overlap matrix (TOM) was converted from the adjacency
matrix and used to derive a TOM-based distance matrix for the next
hierarchical clustering of expressions. We performed an average
hierarchical clustering with the TOM-based metric as distance
and identi�ed groups of highly correlated human genes cutting
the branches of dendrogram by dynamic tree cut algorithm
(Langfelder et al. 2008), which iteratively searches for stable branch
size and selects cluster based on the shape of each branch. We set up
deepSplit = 3, min ModuleSize = 50 as parameters for the dynamic
tree cut function (others were default values).

The expression of each identi�ed human module was then sum-
marized in terms of their Module Eigengene (ME) value, calculated as
the �rst principal component derived from all gene expression
belonging to the given module. To assess the coexpression similarity
between identi�ed modules, a hierarchical clustering was performed

Figure 1 Analysis work�ow of the present study.
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on module eigengene expressions. At a height cut-off of 0.15,
corresponding to a pairwise correlation of 0.85, no strong similarity
was observed between modules.

We also quanti�ed the contribution of a gene to a module by the
module membership metric, de�ned as the correlation between a single
gene’s expression and the speci�c module eigengene ME, referred to as
the kME value thereafter.

Preservation analysis on mouse macrophages dataset
In order to assess how well a human module was preserved in mouse
macrophage data, we used mouse expression data to compute the ME
and kME metrics derived from the human modules genes’ compo-
sition. Preservation of human modules in mouse data was then de-
termined using both human and mouse kME values. “Consistent
genes” between species were then de�ned as the set of genes in each
human module that had concordant sign of kME values in both
datasets. Then, the percentage of consistent genes between species
was computed for each human module; the higher the percentage,
the more preserved the modules.

A permutation procedure was used to assign a P-value to this
measure of preservation between the two datasets. The null hypoth-
esis was that the proportion of consistent genes observed for each
human module was no better than the corresponding proportion of
consistent genes of modules derived from random clustering. To
evaluate this hypothesis, human gene identi�ers were randomly
permuted so that human gene modules of the same size but with
random gene composition were generated. A total of 10,000 such
bootstrap iterations were performed and the percentage of consis-
tent genes of each human random module assignment between the
two species was calculated for each iteration. The probability of the
null hypothesis was then calculated as the proportion of bootstrap
iterations in which the percentage of consistent genes of random
modules across species was greater than that of the human observed
ones. We also evaluated module preservation using alternative,
more complex methods based on composite statistics, Z-summary,
and median rank statistics, derived from the density and connec-
tivity of the modules, as implemented in the WGCNA R package
(Langfelder et al. 2011). These statistics summarize the evidence
that a human module is preserved more signi�cantly than a ran-
dom sample of genes.

Gene ontology and pathway enrichment analysis
To study the biological relevance of consistent genes, we performed a
functional enrichment analysis using the Database for Annotation,
Visualization and Integrated Discovery tool (DAVID; Huang et al.
2009), and the human gene annotation list as background. GO, KEGG,
REACTOME, and PANTHER databases were interrogated among the
consistent genes of preserved modules.

1000 Genomes imputation-based expression
quantitative trait loci analysis in human macrophages
Associations between imputed genotypes and expression were com-
puted using a linear regression model where the imputed allele dosage
was used as covariate to assess SNP effect. Analyses were conducted by
use of the MatrixEQTL R package (Shabalin 2012), adjusting for sex,
age, and potential contaminations cell types (i.e., CD4+, CD8+, CD19+,
CD56+, CD66b+, erythroblasts, and megakaryocytes counts). Expres-
sion quantitative trait loci (eQTL) effects were considered as cis if the
SNP was located within a 106 bp distance upstream or downstream from
probe sequence. Otherwise, they were considered as trans. A statistical

threshold of 5 · 1028 was used to declare signi�cance. A total of 576 in-
dividuals with both imputed genotypes and macrophage gene expres-
sions were available for eQTL analysis.

eQTL analysis in mouse macrophages
eQTL mapping was performed using FaST-LMM (Lippert et al. 2011), a
linear mixed-model method that is able to account for the uncontrolled
population structure of the data.

RNA interference-mediated PARK2 silencing using
small interference RNA
Human THP-1 monocytic cells (from the American Type Culture
Collection) were cultured and differentiated into macrophage-like
cells as previously described (Larrede et al. 2009). PARK2 knock-
down (KD) THP-1 macrophages were obtained by application of
small interference RNA (siRNA) oligonucleotides (Eurogentec) tar-
geted to the complementary DNA sequence of the human PARK2
gene (Genebank: NM_004562). The sequences of the siRNA were
59-UUGCUUAGACUGUUUCCACUUAUAC-UU-39 and 59-P-
GUAUAAGUGGAAACAGUCUAAGCAA-UU-39, respectively.

RNA extraction and gene expression analysis
Forty-eighthoursfollowing transfectionwithsiRNA,controlandPARK2
KD cells were washed twice with cold PBS and total RNA was extracted
using an RNeasy mini kit (Qiagen) according to the manufacturer’s
instructions. Reverse transcription of RNA and real-time quantitative

n Table 1 Characteristics of the 27 modules identified in human
macrophage data

Modules Size ME % % Consistent Genes

M27 62 23.4 0.71
M26 67 30.1 0.64
M25 68 28.1 0.49
M24 73 26.5 0.82
M23 90 28.1 0.80
M22 91 25.8 0.79
M21 96 26.2 0.82
M20 98 28.7 0.63
M19 131 28.4 0.93
M18 141 20.7 0.42
M17 158 24.1 0.82
M16 159 25.2 0.53
M15 160 24.7 0.86
M14 185 21.4 0.67
M13 186 25.8 0.51
M12 209 29.3 0.45
M11 217 27.1 0.60
M10 270 28.6 0.60
M9 282 24.4 0.70
M8 292 25.0 0.58
M7 295 22.9 0.60
M6 369 22.0 0.65
M5 394 26.8 0.69
M4 439 22.6 0.46
M3 449 17.1 0.54
M2 854 18.1 0.61
M1 967 24.2 0.74
M0 (unassigned genes) 1088 3.2 0.70

Size is the number of genes composing the module. ME % is the percentage of
gene expression variability explained by the module eigengene (ME). The last
“module” in this table corresponds to isolated genes (i.e., genes not assigned to
any modules).
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PCR using a LightCycler LC480 (Roche) were performed as previously
described (Larrede et al. 2009). Primers used for quanti�cation of
PARK2, COX6A, and COX6C mRNA are indicated in Supplemental
Material, Table S1. Expression data were based on the crossing points
calculated with the software for LightCycler data analysis and corrected
for PCR ef�ciencies of the target and the reference gene. mRNA levels
were normalized to housekeeping genes (d-aminolevulinate synthase,
hypoxanthine phosphoribosyltransferase, and a-tubulin). Data were
expressed as a fold change in mRNA expression relative to control
values. Four independent experiments were conducted in triplicates.
Nonparametric Mann–Whitney test was used to test for the impact of
PARK2 KD on gene expressions.

Ethic approval and consent to participate
The CTS was approved by the Institutional Ethical Committee of each
Cardiogenics participating center. All individuals gave written informed
consent. All animal work was conducted according to relevant national
and international guidelines and was approved by the UCLA Animal
Research Committee, the UCLA IACUC.

Data availability
Mouse macrophage data used in this study are deposited in the NCBI
GEO repository (http://www.ncbi.nlm.nih.gov/geo/) under the accession

number GSE38705. Cardiogenics macrophage expression data are de-
posited in the European Genome-phenome Archive (https://www.ebi.ac.
uk/ega/) under the accession number EGAS00001000411.

RESULTS
We identi�ed 7890 genes that are orthologous in humans and mice and
forwhichwe hadexpression data in both species; these genes serve as the
basis of our analysis. The overall analysis work�ow adopted in this work
is summarized in Figure 1.

Gene expression modules in human macrophage
Human gene expression data were �rst investigated using WGCNA
(Langfelder and Horvath 2008) to identify modules (or clusters) of
genes whose expressions were highly correlated (see Materials and
Methods). Twenty seven modules encompassing 6802 genes (86%)
were identi�ed (Table 1). The remaining 1088 genes were only weakly
correlated with other genes and were not included in any module. The
size of the identi�ed modules, labeled with numbers to allow their
distinction, ranged from 62 (M27) to 967 (M1) (Table 1). Each module
was then characterized by its �rst principal component (ME) (Langfelder
et al. 2011) computed from the covariance matrix of expression levels of
the genes in the module. The percentage of module expression variability
explained by MEs ranged from 17% (M3 module of size 449) to 30%

Figure 2 Distribution of the percentage
of consistent genes across identi�ed
human macrophage gene expression
modules.
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(M26 module of size 67) (Table 1). The contribution of a given gene to its
module was de�ned as the correlation of its expression with that of its
module-associated ME (the kME metric; Langfelder et al. 2011).

Preservation analysis of human modules in mouse
In a second step, we assessed whether the 27 modules identi�ed in
human macrophages were preserved in the mouse model. For this, we
�rst partitioned themousegenes into the samemodule assignmentsas in
humans. We then computed mouse-speci�c MEs and kMEs. For each
module, we then calculated the percentage of genes exhibiting similar
kME between human and mouse (see Figure S1 for illustrative exam-
ples). Consistent genes are those with similar kME sign across the two
species. A higher percentage of consistent genes indicates the preser-
vation of human module in the mouse dataset. Figure 2 shows the
distribution of the percentage of consistent genes for each human
modules. This percentage ranged from 42% for the M18 module to
93% for the M19 module, with a mean of�65%. From this distribution,
six modules (M19, M15, M21, M17, M23, and M22) were considered
preserved between human and mouse. We also used additional metrics
based on other network properties to assess module preservation, such
as the composite Z-summary and Z median rank statistics (Langfelder
et al. 2011). Their application led to similar results with consistent
identi�cation of the same preserved modules between humans and
mice (Figure S2). We also performed bootstrap analyses (10,000 boot-
strap samples) to assess the statistical signi�cance of the observed pro-
portion of consistent genes for these six modules (see Materials and
Methods). For each module, none of the bootstrap samples produced
proportions of consistent genes that were higher than the observed ones
(P , 1024). Gene composition of the six identi�ed preserved modules
is shown in Table S2.

Enrichment analysis of preserved modules
Pathway analysis was then applied to the six most preserved modules to
assess whether they were enriched for genes belonging to speci�c
biological pathways. Enrichment analysis was performed using the
DAVID software (Huang et al. 2009) interrogating the GO, KEGG,
REACTOME, and PANTHER databases (see Materials and Methods).
Results of the enrichment analysis are provided in Table 2. At a false
discovery rate (FDR) of 5%, three modules were found to be signi�-
cantly enriched in genes belonging to speci�c biological pathways. The
M21 module was signi�cantly enriched (FDR = 8.85 · 10227) for genes
coding for ribosomal-associated proteins and the M15 module for
proteasome-related genes (FDR = 1.37 · 1023). The M15 was also
signi�cantly enriched (FDR = 0.003) for genes belonging to the oxida-
tion phosphorylation (OXPHOS) pathway, as was the M19 module
(FDR = 3.28 · 10211) but much more signi�cantly. OXPHOS genes
present in the M15 and M19 modules, with sizes 10 and 18 respectively,
were not overlapping, which is expected given the way modules were
constructed.

As the OXPHOS module was enriched in candidate genes for
diabetes and neurological disorders, we decided to further focus on the
following sectionon thegenetic components of these genes,with the aim
of identifying additional genetic information that could be relevant for
these human diseases. Results of the corresponding analyses for the
ribosome and proteasome pathways genes are shown in Table S3, Table
S4, and Table S5.

Genetic regulation of the OXPHOS genes
We further investigated whether the human macrophage expression of
the 28 OXPHOS genes from the M19 and M15 modules could be under n
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genetic control. A genome-wide association study (GWAS) analysis was
conducted on the human macrophage expression of each of the
28 OXPHOS genes in the CTS samples. Signi�cant cis eQTLs were
detected for four genes, COX6B1, COX8A, NDUFB7, and NDUFC1,
with minimum association P-values of P = 2.1 · 1029, P = 1.9 · 1028,
P = 6.8 · 1029, and P = 4.3 1029, respectively (Table S6). Three trans-
associations were also detected:

LPCAT1: The minor T allele of rs115960372 SNP at the LPCAT1
gene on chromosome 5 was associated with increased NDUFV2
gene expression (P = 1.9 · 1029) (Table 3). It also showed sug-
gestive evidence of association with increased expression of two
other OXPHOS genes, ATP5C1 (P = 5.64 · 1025) and NDUFAB1
(P = 2.12 · 1026) (Table 3). None of the other studied genes were
associated with the LPCAT1 rs115960372.

TMEM252: The rs35179438 A allele at the TMEM252 locus on
chromosome 9 was associated with decreased SHDB gene expres-
sion (P = 2.7 · 1028) (Table 4). None of the other studied gene
expressions were associated with rs35179438.

PARK2: The minor A allele of rs192804963 SNP, located in the
PARK2 gene, was signi�cantly (P = 4.27 · 1028) associated with
increased COX6C expression and also demonstrated suggestive
evidence for association (P , 1025) with the expression of sev-
eral other OXPHOS genes (Table 5). For 15 of the 28 OXPHOS
gene expressions, the PARK2 rs192804963 association P-value was
, 0.01 (Table 5), a proportion (�53%) was signi�cantly higher (P =
5.2 · 1024) than the corresponding proportion (23%, 1833 of 7862)
observed in the remaining 7862 expressions. The rs192804963 effect
on OXPHOS gene expressions was nearly codominant (Figure S3).

We performed an eQTL analysis to identify other genes that
could be under the genetic in�uence of the PARK2 rs192804963
in human macrophages. Expression of four additional macro-
phage genes was signi�cantly in�uenced by rs192804963 (P ,
5 · 1028), including PRPSAP1 (P = 1.6 · 1028), PPME1 (P =
1.9 · 1028), CAMK2G (P = 2.8 · 1028), and PTPN6 (P = 2.9 ·
1028). Of note, these four genes whose expression were mod-
estly negatively correlated with those of the OXPHOS genes
were not assigned to the preserved modules.

PARK2 gene expression in humans was tagged by two probes
(ILMN_2395692 and ILMN_1714511) available on our array. However,
none of them satis�ed our QC criteria for detection P-values, the as-
sociated detection P-values being . 0.20 for . 95% of the samples. As a
consequence, we were not able to test whether rs192804963 associates
with PARK2 macrophage expression in our study.

The PARK2 rs192804963 is intronic and common, with an
MAF of �0.20, and was inferred with a correct imputation quality
of 0.66. According to public databases, it is in complete linkage disequi-
librium (LD) (D9 = +1) with many other 39 PARK2 SNPs, including the
genotyped rs75203550. The MAFs of the rs192804963 and rs75203550
slightly differed (0.21 vs. 0.13) in CTS, leading to a moderate pairwise LD
r2 of �0.55. Nevertheless, the rs75203550 demonstrated a pattern of
association with macrophage OXPHOS gene expressions similar to that
observed with rs192804963 (Table S7). In addition, after adjusting for the
effect of the genotyped rs75203550, the associations of rs192804963 with
most OXPHOS gene expressions were no longer signi�cant (Table S8).
We were unable to test whether the PARK2 trans effect observed in

n Table 3 Association of LPCAT1 rs115960372 with human macrophage expression of 28 OXPHOS genes

Gene Probes Chr Probe_Start Probe_End ba SEM P Value

M19 OXPHOS genes
SDHB ILMN_1667257 1 17,476,541 17,476,590 0.024 0.0135 0.080
NDUFB3 ILMN_2119945 2 201,943,702 201,944,702 0.045 0.0168 6.82 · 1023

COX17 ILMN_2187718 3 119,396,160 119,396,209 0.000 0.0195 0.982
ATP5I ILMN_1772506 4 678,058 678,107 0.0144 0.0125 0.250
UQCRQ ILMN_1666471 5 132,174,747 132,174,796 0.013 0.0152 0.389
COX7A2 ILMN_1701293 6 75,950,943 75,951,943 0.019 0.0145 0.182
ATP5J2 ILMN_2307883 7 99,217,929 99,217,978 0.028 0.0156 0.075
NDUFB2 ILMN_2117330 7 140,402,713 140,402,762 20.008 0.0172 0.635
COX6C ILMN_1654151 8 100,904,152 100,904,201 0.006 0.0116 0.611
COX8A ILMN_1809495 11 63,742,263 63,743,263 0.020 0.0152 0.183
NDUFA9 ILMN_1760741 12 4,796,151 4,796,200 0.040 0.0175 0.021
ATP5G2 ILMN_1660577 12 54,063,071 54,063,120 20.027 0.0185 0.137
COX6A1 ILMN_1783636 12 120,876,242 120,876,291 0.024 0.0164 0.146
NDUFA11 ILMN_2175712 19 5,945,952 5,946,001 20.018 0.0162 0.259
NDUFB7 ILMN_1813604 19 14,816,068 14,817,068 20.002 0.0159 0.876
COX6B1 ILMN_2154671 19 36,139,232 36,139,281 20.019 0.0132 0.150
ATP5J ILMN_2348093 21 28,180,168 28,180,217 20.010 0.0154 0.509
NDUFA1 ILMN_1784286 X 119,005,887 119,005,936 0.017 0.0139 0.232

M15 OXPHOS genes
ATP5F1 ILMN_1721989 1 112,003,559 112,003,608 0.033 0.0130 0.0110
PPA2 ILMN_1687785 4 106,292,029 106,293,029 0.046 0.0205 0.0256
NDUFC1 ILMN_1733603 4 140,216,254 140,217,254 0.050 0.0175 4.70 · 1023

NDUFA4 ILMN_1751258 7 11,006,668 11,006,717 0.033 0.0171 0.0522
ATP5C1 ILMN_1701269 10 7,801,069 7,801,118 0.074 0.0183 5.64 · 1025

SDHD ILMN_1698487 11 111,966,144 111,966,193 0.049 0.0201 0.015
ATP5L ILMN_2079285 11 118,280,301 118,280,350 0.049 0.022 0.029
NDUFAB1 ILMN_2179018 16 23,684,934 23,684,983 0.091 0.0190 2.12 · 1026

ATP5H ILMN_1666372 17 75,524,607 75,524,656 0.029 0.0136 0.031
NDUFV2 ILMN_2086417 18 9,126,871 9,127,871 0.104 0.0170 1.89 · 1029

aEffect of the minor rs115960372 T allele on gene expression. Its allele frequency was 0.10 and its r2 imputation quality was 0.86.
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human macrophages was also present in mice macrophages because the
mouse study had very low power to assess this effect reliably.

However, to follow-up on these epidemiological observations, we
conducted preliminary experimental investigations to assess whether
PARK2 gene expression could associate in vitro with OXPHOS gene
expressions in human THP-1 macrophages (see Materials and Methods).
For this experimental work, we focused on COX6C and COX6A genes,
the two OXPHOS genes whose expressions were the most signi�cantly
associated with rs192804963 (Table 5). As illustrated in Figure 3, KD
PARK2 expression was accompanied with signi�cant (P = 0.02) in-
crease in COX6C and COX6A THP-1 expressions.

DISCUSSION
To our knowledge, this work is the �rst to propose a comprehensive
approach investigating the genetic architecture of gene coexpression
networks observed in human macrophages that are also preserved in
mice. We provide strong evidence that genetic variability at PARK2 gene
in�uences the macrophage expression of several OXPHOS genes that
are candidates for mitochondrial dysfunction, a biological pathway
associated with several human diseases, such as neurological disorders.

Preservation analysis identi�ed six gene coexpression modules in
humans that were conserved in mouse transcriptome macrophage data.
Four of these modules were signi�cantly enriched into genes belonging
to known biological pathways, such as ribosomal-associated proteins,
proteasome-relatedgene, andoxidativephosphorylation.TheOXPHOS
pathway was of particular interest as several OXPHOS genes were
annotated as susceptibility disease genes, in particular for diabetes
and Alzheimer, Huntington, and Parkinson diseases (Table 2). These

results are consistent with recent works reporting that oxidation phos-
phorylation could represent a key mechanism related to mitochondrial
dysfunction pathway that could explain the association between type
2 diabetes and neurological disorders (Gibson 2005; Khan et al. 2014;
Hao et al. 2015). Oxidative phosphorylation is an important compo-
nent of mitochondrial function, and the later has previously been
shown to be conserved between mouse and human brain transcriptome
(Miller et al. 2010). In that sense, our results partially extend to mac-
rophage some �ndings previously observed in brain. However, the
preservation of the OXPHOS pathway between mouse and human does
not appear to be ubiquitous as this pathway was not identi�ed among
the most commonly coexpressed genes in an extensive comparison
across 30 different tissues (Monaco et al. 2015).

Because of the reportedpossible linksbetween OXPHOSand human
diseases, we further focused our genetic investigations on the OXPHOS
genes and observed strong evidence of trans-association of PARK2
rs192804963 with most macrophage OXPHOS gene expression.
PARK2 gene codes for Parkin, an E3 ubiquitin-protein ligase with
rare missense mutations causing early onset Parkinson disease
(Kitada et al. 1998). Several experimental works have shown that
Parkin plays an important role in mitochondrial dysfunction by
participating in mitochondria autophagic degradation (mitophagy)
(Gehrke et al. 2015; Geisler et al. 2010; Narendra et al. 2010). The
mode of action of Parkin in mitophagy is known to involve several
partners, such as HDAC6, MFN1, MFN2, PINK1, SQSTM1, and
VDAC1 (Narendra et al. 2010; Geisler et al. 2010; Lee et al. 2010;
Chan et al. 2011; Gehrke et al. 2015). Interestingly, these genes were
all expressed in our macrophage data but their expression was not

n Table 4 Association of TMEM252 rs35179438 with human macrophage expression of 28 OXPHOS genes

Gene Probes Chr Probe_Start Probe_End ba SEM P Value

M19 OXPHOS genes
SDHB ILMN_1667257 1 17,476,541 17,476,590 20.053 0.0094 2.66 · 1028

NDUFB3 ILMN_2119945 2 201,943,702 201,944,702 20.034 0.0120 5.24 · 1023

COX17 ILMN_2187718 3 119,396,160 119,396,209 20.031 0.0139 0.0286
ATP5I ILMN_1772506 4 678,058 678,107 20.020 0.0090 0.0244
UQCRQ ILMN_1666471 5 132,174,747 132,174,796 20.045 0.0108 3.55 · 1025

COX7A2 ILMN_1701293 6 75,950,943 75,950,943 20.028 0.0104 7.53 · 1023

ATP5J2 ILMN_2307883 7 99,217,929 99,217,978 20.035 0.0112 1.58 · 1023

NDUFB2 ILMN_2117330 7 140,402,713 140,402,762 20.039 0.0122 1.44 · 1023

COX6C ILMN_1654151 8 100,904,152 100,904,201 20.024 0.0083 4.07 · 1023

COX8A ILMN_1809495 11 63,742,263 63,743,263 20.042 0.0108 1.16 · 1024

NDUFA9 ILMN_1760741 12 4,796,151 4,796,200 20.049 0.0124 1.04 · 1024

ATP5G2 ILMN_1660577 12 54,063,071 54,063,120 20.006 0.0133 0.675
COX6A1 ILMN_1783636 12 120,876,242 120,876,291 20.018 0.0118 0.119
NDUFA11 ILMN_2175712 19 5,945,952 5,946,001 20.028 0.0115 0.0142
NDUFB7 ILMN_1813604 19 14,816,068 14,817,068 20.020 0.0114 0.0764
COX6B1 ILMN_2154671 19 36,139,232 36,139,281 20.028 0.0094 0.0355
ATP5J ILMN_2348093 21 28,180,168 28,180,217 20.041 0.0109 1.63 · 1024

NDUFA1 ILMN_1784286 X 119,005,887 119,005,936 20.034 0.0099 6.42 · 1024

M15 OXPHOS genes
ATP5F1 ILMN_1721989 1 112,003,559 112,003,608 20.022 0.0093 0.0195
PPA2 ILMN_1687785 4 106,292,029 106,293,029 20.023 0.0148 0.123
NDUFC1 ILMN_1733603 4 140,216,254 140,217,254 0.007 0.0126 0.559
NDUFA4 ILMN_1751258 7 11,006,668 11,006,717 20.007 0.0123 0.559
ATP5C1 ILMN_1701269 10 7,801,069 7,801,118 20.032 0.0133 0.0157
SDHD ILMN_1698487 11 111,966,144 111,966,193 20.016 0.0145 0.262
ATP5L ILMN_2079285 11 118,280,301 118,280,350 20.013 0.0160 0.426
NDUFAB1 ILMN_2179018 16 23,684,934 23,684,983 20.026 0.0138 0.0561
ATP5H ILMN_1666372 17 75,524,607 75,524,656 20.034 0.0097 5.44 · 1024

NDUFV2 ILMN_2086417 18 9,126,871 9,127,871 20.022 0.0125 0.0754
aEffect of the minor rs35179438 TA allele on gene expression. Its allele frequency was 0.25 and its r2 imputation quality was 0.79.
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associated with PARK2 rs192804963 (all P . 0.05). Conversely, the
strong associations of PARK2 rs192804963 observed with most
OXPHOS gene expressions open new perspectives into the down-
stream functions of Parkin. OXPHOS is known to associate with
mitochondrial dysfunction (Breuer et al. 2013) but the precise
mechanisms and the involved partners are not well understood. A
recent experimental study (Gehrke et al. 2015) showed that Parkin
participates in mRNA degradation of OXPHOS genes in HEK cells.
Our results obtained from a large-scale epidemiological study, as
well as those derived from experimental works that demonstrated
PARK2 downregulation was associated with increased OXPHOS
gene expression in human macrophages, are in line with this

hypothesis. Our study additionally raises the hypothesis that the
Parkin-dependent mRNA regulation of OXPHOS genes could be
genetically determined. Altogether, these observations provide
strong support for a role of Parkin in the regulation of genes par-
ticipating in the OXPHOS biological system, and that this regulation
is partially dependent on the genetic variability of the PARK2 locus.
Due to the emerging links between OXPHOS, neurological disor-
ders (e.g., Alzheimer and Parkinson), and diabetes (Lima et al. 2014;
De Felice and Ferreira 2014; Santiago and Potashkin 2014), it is
tempting to hypothesize that the identi�ed PARK2 polymorphisms
could impact the risk of such human diseases. Unfortunately, the
PARK2 variants discussed in this work were not available in the

n Table 5 Association of PARK2 rs192804963 with human macrophage expression of 28 OXPHOS genes

Gene Probes Chr Probe_Start Probe_End ba SEM P Value

M19 OXPHOS genes
SDHB ILMN_1667257 1 17,476,541 17,476,590 0.027 0.0116 0.021
NDUFB3 ILMN_2119945 2 201,943,702 201,944,702 0.072 0.0143 5.22 · 1027

COX17 ILMN_2187718 3 119,396,160 119,396,209 0.064 0.0167 1.36 · 1024

ATP5I ILMN_1772506 4 678,058 678,107 0.042 0.0107 9.34 · 1025

UQCRQ ILMN_1666471 5 132,174,747 132,174,796 0.035 0.0131 8.31 · 1023

COX7A2 ILMN_1701293 6 75,950,943 75,950,943 0.055 0.0123 8.29 · 1026

ATP5J2 ILMN_2307883 7 99,217,929 99,217,978 0.061 0.0133 5.13 · 1026

NDUFB2 ILMN_2117330 7 140,402,713 140,402,762 0.035 0.0147 9.62 · 1023

COX6C ILMN_1654151 8 100,904,152 100,904,201 0.055 0.0098 4.27 · 1028

COX8A ILMN_1809495 11 63,742,263 63,743,263 0.056 0.0128 1.74 · 1025

NDUFA9 ILMN_1760741 12 4,796,151 4,796,200 0.058 0.0152 1.08 · 1024

ATP5G2 ILMN_1660577 12 54,063,071 54,063,120 0.024 0.0159 0.128
COX6A1 ILMN_1783636 12 120,876,242 120,876,291 0.071 0.0139 3.81 · 1027

NDUFA11 ILMN_2175712 19 5,945,952 5,946,001 0.027 0.0139 0.055
NDUFB7 ILMN_1813604 19 14,816,068 14,817,068 0.026 0.0137 0.055
COX6B1 ILMN_2154671 19 36,139,232 36,139,281 0.022 0.0114 0.053
ATP5J ILMN_2348093 21 28,180,168 28,180,217 0.023 0.0132 0.086
NDUFA1 ILMN_1784286 X 119,005,887 119,005,936 0.031 0.0119 0.010

M15 OXPHOS genes
ATP5F1 ILMN_1721989 1 112,003,559 112,003,608 0.033 0.0112 3.32 · 1023

PPA2 ILMN_1687785 4 106,292,029 106,293,029 0.000 0.0178 0.967
NDUFC1 ILMN_1733603 4 140,216,254 140,217,254 0.026 0.0152 0.085
NDUFA4 ILMN_1751258 7 11,006,668 11,006,717 0.051 0.0146 4.65 · 1024

ATP5C1 ILMN_1701269 10 7,801,069 7,801,118 0.028 0.0160 0.079
SDHD ILMN_1698487 11 111,966,144 111,966,193 0.027 0.0174 0.122
ATP5L ILMN_2079285 11 118,280,301 118,280,350 0.009 0.0192 0.655
NDUFAB1 ILMN_2179018 16 23,684,934 23,684,983 0.052 0.0165 1.86 · 1023

ATP5H ILMN_1666372 17 75,524,607 75,524,656 0.020 0.0118 0.083
NDUFV2 ILMN_2086417 18 9,126,871 9,127,871 0.044 0.0150 3.52 · 1023

aEffect of the minor rs192804963 A allele on gene expression. Its allele frequency was 0.21 and its r2 imputation quality was 0.66.

Figure 3 Increased COX6A and COX6C expression
in PARK2 KD human macrophages. Relative quanti�-
cation of mRNA levels in human THP-1 macrophages
transfected with control siRNA (circle) or siRNA target-
ing human PARK2 (triangle). The height of the open
rectangle represents the mean (6 SEM) over four in-
dependent experiments.
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IGAPS, IPDGC, or DIAGRAM public depository for GWAS results
in Alzheimer, Parkinson, and type 2 diabetes diseases, respectively.
This is likely due to the fact that these results were not obtained
through 1000 Genomes imputation. Conversely, PARK2 is a suscep-
tibility gene for leprosy (Mira et al. 2004), and de Léséleuc et al.
(2013) have reported that polymorphisms mapping to the PARK2
promoter region could also exert some regulator effect in trans on
the secretion of in�ammatory cytokines. As the PARK2 SNP iden-
ti�ed in our work do not show any LD with PARK2 promoter
polymorphisms, it would be tempting to hypothesize that Parkin
could have a pleiotropic in�uence on several biological mechanisms
through different genetic regulations. Several investigations, includ-
ing a �ne mapping of the whole PARK2 locus, would be mandatory
to assess this hypothesis.

Several limitations must be acknowledged. First, macrophages are
heterogeneous cells that may have different regulations and func-
tions according to tissue speci�city (Pollard 2009). In our study,
mouse macrophages were primary peritoneal macrophage cells,
while in humans, macrophages were generated from monocytes
by M-CSF stimulation. RNA preparation, microarray hybridization,
and expression data preprocessing were performed in different lab-
oratories and followed different bioinformatics work�ows. Never-
theless, such discrepancies may be considered as strengths as they
introduced positive preferential bias in favor of genes ubiquitously
expressed in the most common macrophage cell types. Second, our
strategy for preservation analysis of gene expression modules be-
tween mouse and human was based on �rst identifying modules in
human and then assessing whether these were preserved in mouse.
Several parameters had to be �xed at different steps of the analysis
work�ow, such as the minimum size of the modules and the b
power used in transforming the correlation matrix to an adjacent
matrix satisfying scale-free topology criteria. We performed sensi-
tivity analyses by modifying these parameters and observed similar
�ndings (data not shown). Third, we report here the results of the
preservation of human modules in the mouse dataset. We also con-
ducted the module identi�cation in mouse (despite the much
smaller sample size) and assessed their preservation in human. Sim-
ilar �ndings were observed; for example, modules enriched for ri-
bosome genes (FDR of�1028) and oxidative phosphorylation (FDR
of �1025) were identi�ed as preserved. Fourth, our preservation
analysis and genetic investigations relied on the use of the ME
approach. This strategy may not fully detect the preserved modules
and the genetic variations underlying their expression variability,
as the percentage of module expression variability explained by the
ME was rather moderate. By design (Charchar et al. 2012; Garnier
et al. 2013), the CTS dataset was composed of individuals affected
with coronary artery disease and healthy individuals. Even though
we cannot exclude that this may have introduced additional hetero-
geneity in the study sample, it is important to emphasize that the
trans effect observed at PARK2 rs192840963 is present both in
healthy and diseased individuals (Table S9). Finally, our results were
mainly derived from a comprehensive epidemiological investigation
of large-scale and well-powered genomic/transcriptomic resources.
It was not possible to replicate the statistical associations/correlations
we observed in macrophages, as there are no other human epide-
miological resources available that are similar to CTS resources.
This is an important point, especially for the trans association ob-
served at the lead PARK2 SNP that was imputed. Even though its
imputation quality was correct, validation of the observed associa-
tion on genotyped SNP data could be valuable. However, it was not
possible to test it in the present study as we did not have easy access

to DNA samples of the studied individuals. Further experimental
works, including PARK2 KD in mice, are mandatory to support our
�ndings.

Inconclusion, this studyprovidesnewarguments supporting the role
of Parkin as a key regulator of oxidative phosphorylation in macro-
phages, and suggests that this mechanism could be partially genetically
determined in humans.
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