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ABSTRACT Genomic selection (GS) models use genome-wide genetic information to predict genetic values of
candidates of selection. Originally, these models were developed without considering genotype · environment in-
teraction(G·E). Several authors have proposed extensions of the single-environment GS model that accommodate
G·E using either covariance functions or environmental covariates. In this study, we model G·E using a marker ·
environment interaction (M·E) GS model; the approach is conceptually simple and can be implemented with existing
GS software. We discuss how the model can be implemented by using an explicit regression of phenotypes on markers
or using co-variance structures (a genomic best linear unbiased prediction-type model). We used the M·E model to
analyze three CIMMYT wheat data sets (W1, W2, and W3), where more than 1000 lines were genotyped using
genotyping-by-sequencing and evaluated at CIMMYT’s research station in Ciudad Obregon, Mexico, under simulated
environmental conditions that covered different irrigation levels, sowing dates and planting systems. We compared the
M·E model with a stratified (i.e., within-environment) analysis and with a standard (across-environment) GS model that
assumes that effects are constant across environments (i.e., ignoring G·E). The prediction accuracy of the M·E model
was substantially greater of that of an across-environment analysis that ignores G·E. Depending on the prediction
problem, the M·E model had either similar or greater levels of prediction accuracy than the stratified analyses. The
M·E model decomposes marker effects and genomic values into components that are stable across environments
(main effects) and others that are environment-specific (interactions). Therefore, in principle, the interaction model could
shed light over which variants have effects that are stable across environments and which ones are responsible for G·E.
The data set and the scripts required to reproduce the analysis are publicly available as Supporting Information.
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The presence of genotype · environment(G·E) interactions in agri-
cultural experiments usually is expressed as changes in the relative
performance of genetic materials across environments; this can man-

ifest as modifications of the ranking of genotypes across environments
or simply as changes in the absolute difference in performance be-
tween pairs of genotypes. Accounting for G·E has always been a con-
cern in the analysis of multienvironment plant breeding trials, and
several models have been proposed and used for describing the mean
response of genotypes over environments and for studying and inter-
preting G·E in agricultural experiments (e.g., Yates and Cochran
1938; Finlay and Wilkinson, 1963; Eberhart and Russell 1966).

The statistical treatment of G·E has evolved over time due to the
development of statistical methods and because of changes in the
information available, including the increased availability of DNA
markers and of precise environmental information. Some approaches
deal with G·E implicitly, without explicitly modeling gene · environment
interactions; these include some of the early treatment of G·E (e.g., the
joint-regression analysis of Yates and Cochran 1938), as well as more
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modern methods such as the multivariate pedigree- or marker-based
models where G·E is modeled using structured or unstructured covari-
ance functions (Piepho, 1997, 1998; Smith et al. 2005; Crossa et al. 2006;
Burgueño et al. 2007). These approaches have proved to be effective for
exploiting G·E; however, they do not shed light on the underlying basis
of G·E (e.g., the relative contribution of different genetic regions to
stability and to G·E). When genomic and environmental covariate data
are available, G·E can be modeled explicitly by means of marker ·
environment interactions (M·E). This approach was first used with
sparse marker data in quantitative trait loci (QTL) analysis (QTL·E
Moreau et al. 2004) and also in multilocus models with markers that
exhibited “significant” association with the trait of interest (Boer et al.
2007). The QTL·E approach has been further extended to multitrait,
multienvironment settings (e.g., Malosetti et al. 2004, 2008).

Recent developments in genotyping and sequencing technologies
have made it possible to use dense genotypic information for genomic
selection (GS) (Meuwissen et al. 2001). Empirical evidence obtained
with plant and animal breeding data has demonstrated that GS can
outperform the prediction accuracy of pedigree-based methods or that
of models based on a reduced number of loci (de los Campos et al.
2009, 2010; Crossa et al. 2010, 2011; Heslot et al. 2012; Pérez-Rodríguez
et al. 2012). This has prompted the relatively fast adoption of GS in
plant and animal breeding. GS models originally were developed for
a single trait evaluated in a single environment, and most analyses
published so far are based on within-environment analyses.

Recently, several studies have proposed using GS models that
accommodate G·E. For instance, Burgueño et al.(2012) extended the
single-trait, single-environment genomic best linear unbiased prediction
(GBLUP) model to a multienvironment context and reported important
gains in prediction accuracy with the multienvironment model relative
to single-environment analysis. More recently, Heslot et al. (2014) and
Jarquin et al. (2014) considered modeling G·E using both genetic
markers and environmental covariates. These studies also showed that
modeling G·E can give substantial gains in prediction accuracy.

Following ideas originally used for QTL analysis in multienviron-
ment trials(Van Eeuwijk et al. 2005; Boer et al. 2007; Malosetti et al.
2004, 2008), we present GS models that accommodate G·E by explicitly
modeling interactions between all available markers and environments.
Relative to multivariate approaches where G·E is modeled using co-
variance parameters(e.g., Smith et al. 2005), the M·E approach has
advantages and disadvantages. First, the M·E models presented here
can be easily implemented using existing software for GS. Second, the
model can be implemented using both shrinkage methods as well as
variable selection methods. Third, the M·E model decomposes effects
into components that are common across environments (stability) and
environment-specific deviations; this information, which is not pro-
vided by standard multienvironment mixed models, can be used to
identify genomic regions whose effects are stable across environments
and others that are responsible for G·E. On the other hand, the M·E
model imposes restrictions on the patterns of G·E, and, for reasons that
we discuss in this article, the model is best suited for the joint analysis of
positively correlated environments.

In this study, we applied the M·E model to extensive data sets where
wheat lines were evaluated under contrasting environmental conditions in
replicated field trials. This allowed us to identify under which conditions
the M·E model is most effective. We show theoretically and demonstrate
empirically that the magnitude of the main and interaction variance is
directly related to the phenotypic correlation between environments and
that the M·E model performs best when the set of environments ana-
lyzed showed positive and similar correlations. Indeed, when the set of
environments analyzed had moderate or high positive correlations, the

M·E model yielded substantial gains in prediction accuracy relative to an
across-environment GS model that assumes homogeneity of effects across
environments, and, depending on the prediction problem, it either per-
formed similarly or outperformed the stratified (i.e., within-environment)
analyses. In the rest of this article, we describe the methods used and
present empirical results obtained when the M·E model was applied to
three wheat data sets. We also provide, as online materials, scripts that
implement the interaction models using the BGLR R-package (de los
Campos and Pérez-Rodriguez 2014).

MATERIALS AND METHODS
The data used in this study are from CIMMYT’s Global Wheat Pro-
gram and consist of a set of wheat lines evaluated under managed
environmental conditions; these conditions were designed to simulate
target mega-environments. The wheat lines included in this study
were later part of the 45th, 46th, and 47th International Bread Wheat
Screening Nurseries and distributed worldwide.

Three files containing phenotypic and genotypic information on
the three data sets used in this study (45th, 46th and 47th International
Bread Wheat Screening Nurseries) are provided as Supporting
Information, File S1, File S2, and File S3, respectively.

Phenotypic data
The phenotypic data consisted of adjusted grain yield(ton/ha) records
collected during three evaluation cycles (W1: cycle 201022011, N = 732;
W2: cycle 201122012, N = 672; and W3: cycle 201222013, N = 811);
each cycle included a different set of advanced breeding lines. All trials
were established at CIMMYT’s main wheat breeding station at Cd.
Obregon, Mexico. The experimental design was an alpha-lattice with
three replicates per line and environment. Wheat lines were evaluated
under three irrigation regimes(2i = two irrigations giving moderate
drought stress, 5i = five irrigations representing an optimally irrigated
crop, and 0i = no irrigation or drip irrigation, representing high drought
stress), two planting systems (B = bed planting; F = planting on the flat)
and two planting dates (N = normal and H = late, simulating heat at the
grain-filling stage). In the 2i and 5i regimes, irrigation was applied without
measuring soil moisture, and each irrigation added 100 mm of water.
Some of the trials were managed using no-tillage(hereinafter denoted as
Z). Table 1 gives the number of phenotypic records per simulated envi-
ronment and cycle. The phenotype used in the analysis was the best linear
unbiased estimate of grain yield obtained from a linear model applied to
the alpha-lattice design of each cycle-environment combination.

Genotypic data
Genotypes were derived using genotyping-by-sequencing technology
(GBS; Poland et al. 2012). GBS markers with a minor allele frequency
lower than 0.05 were removed. As is typical of GBS genotypes, all
markers had a high incidence of uncalled genotypes. In our quality
control pipeline, we applied thresholds for incidence of missing values
aimed at maintaining relatively large and similar numbers of markers
per data set. To this end, we removed markers with more than 60%
(W1 and W2) or 80% (W3) missing values; this left 15,744 (W1 and
W2) and 14,217(W3) GBS markers available for analysis. Finally, only
lines with more than 2000 called GBS markers were used in the data
analysis; this left 693 (W1), 670 (W2), and 807(W3) lines.

Statistical models
For each evaluation cycle (W1, W2, and W3), we considered three
approaches: (i) a stratified analysis obtained by regressing phenotypes
on markers separately in each environment (we refer to this approach,
indistinctively, as to single-environment, within-environment or
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stratified analysis); (ii) a combined analysis based on a GS model
where marker effects are assumed to be constant across environments
(i.e., ignoring M·E) (hereinafter referred to as the “across-environ-
ment”model); and (iii) using a M·E model that allows analyzing data
from multiple environments jointly and accounts for G·E. Each of
these approaches is discussed in the sections to follow.

Stratified analysis: This model is obtained by regressing the
phenotype vector containing the records available in the jth environ-
ment, yj ¼ fyijg, where i indexes lines (individuals) and j indexes
environments, on markers using a linear model in the
form: yij ¼ mj þ

Pp
k¼1xijkbjk þ eij, (i = 1,2,. . .,n individuals; j =

1,2,. . .s environments; k = 1,2,. . .,p markers) or, in matrix notation,

yj ¼ 1mj þ Xjbj þ ej (1a)

where mj is an intercept, Xj ¼ fxijkg is a matrix of marker-centered
and standardized genotypes(i.e., each marker was centered by sub-
tracting the mean and standardized by dividing by the sample stan-
dard deviation), bj ¼ fbjkg is a vector of marker effects and ej is
a vector of model residuals. Note that, in a full-factorial design where
all lines are evaluated in all environments, X1 ¼ X2 ¼ . . . ¼ Xs.
Following the standard assumptions of the GBLUP model (e.g.,
Vanraden, 2007, 2008), marker effects and model residuals were
assumed to be independent of each other and both normally dis-
tributed: bj � Nð0; Is2

bj
Þ, and ej � Nð0; Is2

ejÞ. Setting uj ¼ Xjbj; we
have that the aforementioned model also can be represented as
follows:

yj ¼ 1mj þ uj þ ej (1b)

with uj � Nð0;Gjs
2
ujÞ, where Gj ¼ XjXj

9

p was obtained using the
cross-product of (centered and standarized) marker genotypes and
scaled by dividing by the number of markers. Because all markers
were standardized to a unit variance, this gives an average diagonal
value of Gj equal to one.

Box 1a in File S4 provides an R-script that implements the single-
environment model described previously using the BGLR R-package
(de los Campos and Pérez-Rodriguez 2014).

Across-environment GBLUP model: another approach consists of
assuming that effects of markers are the same across environments, that

is: b1 ¼ b2 ¼ . . . ¼ bs ¼ b; therefore the regression model (1b)
becomes (assuming s = 3, for ease of notation):

2
4 y1
y2
y3

3
5 ¼

2
4 1m1
1m2
1m3

3
5þ

2
4X1

X2

X3

3
5b þ

2
4 e1
e2
e3

3
5 (2a)

In a GBLUP-context, one will assume b � Nð0; Is2
bÞ and the afore-

mentioned model can be represented as a random effect model as
follows: 2

4 y1
y2
y3

3
5 ¼

2
4 1m1
1m2
1m3

3
5þ

2
4 u1
u2
u3

3
5þ

2
4 e1
e2
e3

3
5 (2b)

where uj ¼ Xjb, and u ¼ ðu91; u92; u93Þ9 � Nð0;G0s
2
uÞ, where

G0 ¼
2
4X1X19 X1X29 X1X39
X2X19 X2X29 X2X39
X3X19 X3X29 X3X39

3
5,p

is a marker-derived genomic relationship matrix. It is worth noting
that, for balanced data, the model of expression (2a) is equivalent to
fitting a genomic regression model using the average performance of
each line across environments as a phenotype.

Box 2a in File S4 provides an R-script that implements the across-
environment model described above using the BGLR R-package (de
los Campos and Pérez-Rodriguez 2014).

M·E GBLUP model: In the model in expression (1a), marker effects
(bj) are estimated separately for each environment; therefore, in this
model there is no borrowing of information across environments. On
the other hand, in the model in expression (2a), all data are used to
estimate marker effects; however, in that model borrowing of infor-
mation is achieved by assuming that effects are constant across envi-
ronments. We now consider an interaction model that aims at
benefiting from borrowing information across environments while
allowing marker effects to change across environments. In the M·E
model, the effect of the kth marker on the jth environment (bjk) is
described as the sum of an effect common to all environments (b0k),
plus a random deviation (bjk) peculiar to the jth environment, that is
bjk ¼ b0k þ bjk. Therefore, the equation for data from the jth

n Table 1 Number of phenotypic records per cycle (W1, W2, and W3) and
environment

Environmenta

Data Set

W1
(Cycle 2010-11,

45th IBWSN)

W2
(Cycle 2011-12,

46th IBWSN)

W3
(Cycle 2012-13,

47th IBWSN)

0iBN 693 – –
0iFN – 670 807
2iBN 693 – 807
5iBNZ 693 – –
5iBH – 670 807
5iBN – 670 807
5iFN 693 670 807
Total 2772 2680 4035
a

Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation
cycles; B/F denotes whether the planting system was ‘bed’ (B) or ‘flat’ (F); N/H denotes whether
planting date was normal (N) or late (H, simulating heat); Z indicates no tillage. IBWSN denotes
International Bread Wheat Screening Nurseries
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environment becomes yij ¼ mj þ
Pp

k¼1xijkðb0k þ bjkÞ þ eij, or, in
matrix notation and assuming, for ease of notation, only three
environments,2
4 y1
y2
y3

3
5 ¼

2
4 1m1
1m2
1m3

3
5þ

2
4X1

X2

X3

3
5b0 þ

2
4X1 0 0

0 X2 0
0 0 X3

3
5
2
4 b1
b2
b3

3
5þ

2
4 e1
e2
e3

3
5;
(3a)

where the vectors of main and interaction effects and model
residuals were all assumed to be normally distributed, specifically:
b0 � Nð0; Is2

b0
Þ, bj � Nð0; Is2

bj
Þ and ej � Nð0; Is2

e Þ. The aforemen-
tioned model can be represented as a two-variance component
GBLUP model, specifically, letting y ¼ ðy19; y29; y39Þ9,

m ¼
2
4 1m1
1m2
1m3

3
5; u0 ¼

2
4X1

X2

X3

3
5b0; u1 ¼

2
4X1 0 0

0 X2 0
0 0 X3

3
5
2
4 b1
b2
b3

3
5

the model can be represented as

y ¼ mþ u0 þ u1 þ e; (3b)

where u0 � Nð0;s2
u0G0Þ, u1 � Nð0;G1Þ, e � Nð0; Is2

e Þ where G0 is
as described previously and

G1 ¼
2
4s2

u1X1X19 0 0
0 s2

u2X2X29 0
0 0 s2

u3X3X39

3
5,p

Figure 1 Box-plot of adjusted grain yield by environment and cycle. Environments are denoted by a sequence of codes: 0i, 2i, and 5i denote the
number of irrigation cycles; B/F denotes whether the planting system was “bed” (B) or “flat” (F); N/H denotes whether planting date was normal
(N) or late (H, simulating heat); Z indicates no tillage.

n Table 2 SD (diagonal) and sample correlation (lower-triangular) between grain yields evaluated under different environmental
conditions, by cycle

0iBN 2iBN 5iBNZ 5iFN 2

W1 (cycle 201022011, 45th IBWSN)
Environment a

0iBN 0.61 2 2 2 2
2iBN 0.53 (0.4720.58) 0.51 2 2 2
5iBNZ 0.25 (0.1820.32) 0.34 (0.2720.40) 0.60 2 2
5iFN 0.26 (0.19 20.33) 0.33 (0.2620.39) 0.22 (0.1520.29) 0.63 2

W2 (cycle 201122012, 46th IBWSN)
Environment 0iFN 5iBH 5iBN 5iFN 2

0iFN 0.54 2 2 2 2
5iBH 0.34 (0.2720.41) 0.60 2 2 2
5iBN 20.05 (-0.13,0.02) 0.33 (0.26,0.39) 0.65 2 2
5iFN 0.31 (0.2420.38) 0.41 (0.35,0.47) 0.41 (0.3520.47) 0.58 2

W3 (cycle 201222013, 47th IBWSN)
Environment 0iFN 2iBN 5iBH 5iBN 5iFN

0iFN 0.51 2 2 2 2
2iBN 0.17 (0.1020.23) 0.41 2 2 2
5iBH 0.30 (0.2420.36) 20.03 (-0.10, 0.04) 0.60 2 2
5iBN 20.10 (20.16, 20.03) 0.12 (0.0520.19) 20.09 (20.16, 20.02) 0.49 2
5iFN 20.01 (20.08, 0.06) 0.04 (20.03, 0.10) 0.02 (20.05, 0.09) 0.55 (0.5020.59) 0.51

95% confidence interval for the correlations are given in parentheses. IBWSN, International Bread Wheat Screening Nurseries
a

Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes whether the planting system was “bed” (B) or
“flat” (F); N/H denotes whether planting date was normal (N) or late (H, simulating heat); Z indicates no tillage.
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In this model, the main effect (u0) allows borrowing
information between environments (through the off-diagonal
blocks of G0) and u1 captures environment-specific effects. The

relative importance of these two terms is determined by the
corresponding variance components that are inferred from the
data.

n Table 3 Estimates of variance components (estimated posterior SD) by model and environment, cycle 201022011 (W1)

Models/Environmentsa Residual Main Effect Interaction (M·E) R-Squaredb

Single environment
0iBN 0.529(0.037) 0.400(0.066) 2 0.429(0.049)
2iBN 0.362(0.031) 0.609(0.082) 2 0.624(0.044)
5iBNZ 0.549(0.043) 0.533(0.089) 2 0.489(0.053)
5iFN 0.584(0.041) 0.370(0.064) 2 0.386(0.050)

Interaction
Model

Across-Env
Model

Interaction
Model

Across-Env
Model

Interaction
Model

Interaction
Model

Across-Env
Model

Pairs of environments
0iBN Cor = 0.53 0.429(0.022) 0.497(0.023) 0.427(0.057) 0.433(0.054) 0.092(0.031) 0.545(0.036) 0.464(0.036)
2iBN 0.118(0.039) 0.557(0.035)
0iBN Cor = 0.25 0.527(0.029) 0.714(0.032) 0.188(0.054) 0.239(0.042) 0.220(0.061) 0.433(0.046) 0.250(0.036)
5iBNZ 0.369(0.084) 0.510(0.048)
0iBN Cor = 0.26 0.558(0.028) 0.681(0.029) 0.173(0.045) 0.228(0.037) 0.198(0.055) 0.396(0.044) 0.250(0.033)
5iFN 0.196(0.060) 0.395(0.046)
2iBN Cor = 0.34 0.434(0.025) 0.609(0.028) 0.367(0.062) 0.374(0.052) 0.202(0.059) 0.564(0.039) 0.379(0.037)
5iBNZ 0.309(0.081) 0.605(0.043)
2iBN Cor = 0.33 0.474(0.026) 0.634(0.028) 0.254(0.052) 0.290(0.042) 0.252(0.061) 0.513(0.041) 0.313(0.034)
5iFN 0.191(0.060) 0.481(0.046)
5iBNZ Cor = 0.22 0.577(0.031) 0.723(0.031) 0.134(0.046) 0.221(0.037) 0.351(0.084) 0.453(0.049) 0.234(0.032)
5iFN 0.215(0.067) 0.374(0.048)

All environments
0iBN 0.485(0.018) 0.681(0.020) 0.316(0.042) 0.272(0.034) 0.116(0.038) 0.472(0.035) 0.285(0.027)
2iBN 0.117(0.036) 0.471(0.032)
5iBNZ 0.396(0.073) 0.594(0.034)
5iFN 0.263(0.059) 0.543(0.037)

a
Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes whether the planting system was “bed” (B) or
“flat”(F); N/H denotes whether planting date was normal (N) or late (H, simulating heat); Z indicates no tillage.

b
Model R2 was computed as the ratio of the sum of the main and interaction variance, relative to the total variance (residual + main effect + interaction). Env, environment.

n Table 4 Estimates of variance components (estimated posterior SD) by model and environment, cycle 201122012 (W2)

Models/Environmentsa Residual Main Effect Interaction (M·E) R-Squaredb

Single environment
0iFN 0.563(0.046) 0.512(0.099) 2 0.473(0.060)
5iBH 0.606(0.046) 0.488(0.088) 2 0.443(0.055)
5iBN 0.492(0.041) 0.612(0.097) 2 0.551(0.052)
5iFN 0.611(0.046) 0.423(0.080) 2 0.407(0.055)

Pairs of environments Interaction
Model

Across-Env
Model

Interaction
Model

Across-Env
Model

Interaction
Model

Interaction
Model

Across-Env
Model

0iFN Cor = 0.34 0.541(0.032) 0.712(0.034) 0.371(0.079) 0.344(0.060) 0.223(0.073) 0.520(0.051) 0.325(0.043)
5iBH 0.243(0.073) 0.528(0.049)
0iFN Cor =-0.05 0.532(0.032) 0.841(0.036) 0.056(0.023) 0.149(0.029) 0.476(0.096) 0.495(0.053) 0.151(0.026)
5iBN 0.500(0.091) 0.506(0.048)
0iFN Cor = 0.31 0.532(0.031) 0.729(0.035) 0.389(0.082) 0.324(0.058) 0.232(0.071) 0.535(0.050) 0.307(0.042)
5iFN 0.199(0.063) 0.521(0.049)
5iBH Cor = 0.33 0.537(0.029) 0.668(0.031) 0.370(0.065) 0.388(0.057) 0.184(0.062) 0.505(0.044) 0.367(0.039)
5iBN 0.199(0.062) 0.512(0.042)
5iBH Cor = 0.41 0.553(0.030) 0.651(0.032) 0.441(0.075) 0.428(0.067) 0.147(0.050) 0.513(0.044) 0.396(0.042)
5iFN 0.125(0.043) 0.503(0.044)
5iBN Cor = 0.41 0.539(0.029) 0.617(0.030) 0.381(0.065) 0.407(0.059) 0.169(0.058) 0.502(0.044) 0.396(0.040)
5iFN 0.130(0.047) 0.484(0.043)

All environments
0iFN 0.519(0.021) 0.737(0.022) 0.436(0.056) 0.334(0.045) 0.400(0.076) 0.614(0.034) 0.311(0.031)
5iBH 0.147(0.046) 0.528(0.036)
5iBN 0.266(0.069) 0.572(0.037)
5iFN 0.097(0.033) 0.504(0.034)

a
Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes whether the planting system was “bed” (B) or
“flat” (F); N/H denotes whether planting date was normal (N) or late (H, simulating heat); Z indicates no tillage.

b
Model R2 was computed as the ratio of the sum of the main and interaction variance, relative to the total variance (residual + main effect + interaction).
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Box 3a in File S4 provides an R-script that implements the M·E
model described previously using the BGLR R-package (de los Campos
and Pérez-Rodriguez 2014).

Software
The aforementioned models can be implemented using standard
software for GS. For our implementation, we used the R (R Core
Team 2013) package Bayesian generalized linear regression
(BGLR, de los Campos and Pérez-Rodriguez 2014). This software
does not allow fitting group-specific error variances; therefore, in
our interaction model and in our across-environment analyses,
we fit the models assuming homogeneous error variances across
environments. The code used to implement these models is pro-
vided in the Supporting Information; technical details and several
examples of the use of the package for genome-enabled prediction
can be found in de los Campos and Pérez-Rodriguez (2014). We
used a Bayesian model assuming Gaussian priors for the marker
effects. The BGLR package assigns scaled-inverse x2 densities to
the variance parameters whose hyperparameters were given values
using the default rules implemented in BGLR, which assign 5
degrees of freedom and calculates the scale parameter based on
the sample variance of the phenotypes. Further details are given
in de los Campos and Pérez-Rodriguez (2014).

Statistical analysis
The aforementioned models were fitted to data from each of the cycles
(W12W3), separately. For each cycle data we performed analysis: (i)
within-environment (see expression 1a), or (ii) by pairs of environ-
ments or, (iii) using data from all environments together. These last
two approaches were implemented either using the model in expres-
sion (2a) or the interaction model expression (3a).

Models were fitted to each of the full data sets to derive estimates
of variance components. Subsequently, we assessed prediction
accuracy using training-testing (i.e., TRN-TST) random partitions
(see below). For this validation procedure, all the parameters of the
models, including variance components, were re-estimated from TRN
data in each of the TRN-TST partitions. In all cases, inferences and
predictions were based on 55,000 samples collected from the posterior
distribution after discarding 5000 samples for burn-in.

Prediction accuracy was assessed using 50 TRN-TST random
partitions; we used this approach because with a replicated TRN-TST
design one can obtain as many partitions as one needs and this allows
estimating SEs of estimates of prediction accuracy more precisely than
with a cross-validation approach. Following Burgueño et al. (2012), we
considered two different prediction problems. First (CV1), we assessed
prediction accuracy of the models when TRN and TST data consist of
disjoint sets of lines; this approach mimics the prediction problem

n Table 5 Estimates of variance components (estimated posterior standard deviation) by model and environment, cycle 2012-13 (W3)

Models/Environmentsa Residual Main Effect Interaction (M·E) R-Squaredb

Single environment
0iFN 0.296(0.052) 0.674(0.087) 2 0.692(0.061)
2iBN 0.410(0.059) 0.585(0.091) 2 0.589(0.068)
5iBH 0.220(0.037) 0.653(0.067) 2 0.745(0.047)
5iBN 0.386(0.068) 0.674(0.105) 2 0.633(0.073)
5iFN 0.491(0.071) 0.563(0.103) 2 0.532(0.077)

Pairs of environments Interaction
Model

Across-Env
Model

Interaction
Model

Across-Env
Model

Interaction
Model

Interaction
Model

Across-Env
Model

0iFN Cor = 0.17 0.336(0.042) 0.758(0.031) 0.204(0.040) 0.214(0.031) 0.413(0.070) 0.645(0.051) 0.220(0.027)
2iBN 0.470(0.080) 0.664(0.051)
0iFN Cor = 0.30 0.243(0.033) 0.622(0.026) 0.193(0.038) 0.259(0.029) 0.540(0.076) 0.750(0.041) 0.295(0.026)
5iBH 0.426(0.065) 0.717(0.043)
0iFN Cor=-0.10 0.328(0.046) 0.898(0.034) 0.045(0.015) 0.095(0.019) 0.588(0.079) 0.657(0.055) 0.096(0.018)
5iBN 0.709(0.093) 0.694(0.052)
0iFN Cor=-0.01 0.373(0.047) 0.872(0.034) 0.066(0.024) 0.118(0.023) 0.512(0.076) 0.606(0.056) 0.119(0.022)
5iFN 0.647(0.096) 0.654(0.055)
2iBN Cor=-0.03 0.279(0.037) 0.837(0.032) 0.051(0.017) 0.126(0.021) 0.712(0.086) 0.730(0.045) 0.131(0.020)
5iBH 0.534(0.063) 0.676(0.047)
2iBN Cor = 0.12 0.417(0.051) 0.786(0.032) 0.089(0.030) 0.171(0.027) 0.473(0.086) 0.570(0.062) 0.179(0.025)
5iBN 0.531(0.093) 0.594(0.060)
2iBN Cor = 0.04 0.462(0.050) 0.854(0.034) 0.072(0.025) 0.135(0.025) 0.442(0.079) 0.524(0.060) 0.137(0.023)
5iFN 0.514(0.090) 0.556(0.060)
5iBH Cor=-0.09 0.253(0.038) 0.877(0.033) 0.045(0.015) 0.103(0.019) 0.568(0.066) 0.707(0.049) 0.106(0.018)
5iBN 0.825(0.089) 0.773(0.041)
5iBH Cor = 0.02 0.282(0.041) 0.838(0.033) 0.081(0.028) 0.135(0.023) 0.497(0.067) 0.671(0.051) 0.140(0.022)
5iFN 0.777(0.096) 0.751(0.045)
5iBN Cor = 0.55 0.288(0.031) 0.463(0.023) 0.678(0.055) 0.617(0.052) 0.159(0.046) 0.741(0.033) 0.571(0.027)
5iFN 0.188(0.051) 0.748(0.033)

All environments
0iFN 0.310(0.030) 0.886(0.021) 0.113(0.018) 0.101(0.014) 0.539(0.064) 0.676(0.039) 0.102(0.014)
2iBN 0.614(0.075) 0.699(0.039)
5iBH 0.475(0.054) 0.653(0.038)
5iBN 0.639(0.075) 0.706(0.038)
5iFN 0.637(0.079) 0.706(0.040)

a
Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes whether the planting system was “bed” (B) or
“flat” (F); N/H denotes whether planting date was normal (N) or late (H, simulating heat); Z indicates no tillage.

b
Model R2 was computed as the ratio of the sum of the main and interaction variance, relative to the total variance (residual + main effect + interaction).
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faced by breeders when lines have not been evaluated in any field
trials. To generate TRN and TST sets in CV1 we simply assigned
completely at random 70% of the lines to TRN and the remaining
30% to TST.

Second (CV2), we considered the problem of predicting the
performance of lines in environments in which lines have not been
evaluated. This validation design mimics the prediction problem faced
by breeders in incomplete field trials where lines are evaluated in some
but not all target environments. TRN-TST partitions for CV2 were
obtained as follows: in each data set (w = 1,2,3), each line (i =
1,. . ., nw) had records in sw environments (j = 1,. . ., sw; sw ¼ 4 in
W1 and W2, and sw ¼ 5 in W3); therefore, the total number of
records available per data set was Nw ¼ nw · sw. To select the entries
in the TST data set, we first chose 0:3 ·Nw IDs (i.e., lines) at random
and subsequently randomly picked one environment per line from the
index j = 1,. . ., sw. The resulting cells ðijÞ were assigned to the TST
data set, and the ones not selected through this algorithm were used
for model TRN. Lines were sampled without replacement if
nw $ 0:3 ·Nw and with replacement otherwise. Boxes 4a and 4b in
File S4 provide the R-code used to generate TRN-TST partitions in
CV1 and CV2, and Boxes 5 and 6 illustrate how to fit models and
evaluate prediction accuracy for a TRN-TST partition.

For each TRN-TST partition, models were fitted to the TRN data
set and prediction accuracy was assessed by computing Pearson’s
product-moment correlation between predictions and phenotypes in
the TST data set, within environment. The same TRN-TST partitions
were used to assess the prediction accuracy of each of the models; this

yielded 50 correlation estimates for each model, data set, and we re-
port the average correlation (across partitions) and SEs.

RESULTS
Figure 1 shows box-plots of adjusted yield per data set and environ-
mental condition. As expected, average yield increased with the num-
ber of irrigation events and, other factors being equal, late planting
(H) produced lower yields than normal planting (N). In all cases, the
empirical distribution of grain yield within data set and environment
was reasonably symmetric.

Table 2 gives the SDs of grain yield for each environment-cycle
combination and the (empirical) phenotypic correlations of adjusted
grain yield across environments, within cycle. The average SD of grain
yield was rather stable across environments, ranging from 0.41 to 0.65.
In the first cycle (W1), correlations across environments were mod-
erately positive, ranging from 0.22 to 0.53 and, as one would expect,
environments with similar irrigation levels (e.g., 0i and 2i) exhibited
greater correlations than environments with very different numbers of
irrigations (e.g., 0i vs. 5i). In the second evaluation cycle (W2), three
environments received five irrigations (5i) and one received none (0i).
The correlations among environments with five irrigations were also
moderately positive, ranging from 0.33 to 0.41. However, the correla-
tion between drought environments (0i) and environments having
five irrigations was almost zero (20.05). Finally, in the third evalua-
tion cycle (W3), the two environments with five irrigations and nor-
mal planting dates (5iBN and 5iFN) were positively correlated (0.55);
however, environments with different irrigation levels or different

n Table 6 Estimated prediction accuracy: correlation between predicted and adjusted grain
yield, averaged over 50 TRN-TST partitions), cycle 201022011 (W1), CV1

Model/Environmentsa Correlation Change%b Numberc

Single environment
0iBN 0.530(0.039) 2 2
2iBN 0.629(0.038) 2 2
5iBNZ 0.472(0.054) 2 2
5iFN 0.486(0.050) 2 2

Pairs of environments Interaction
Model

Across-Env
Model

0iBN Cor = 0.53 0.529(0.038) 0.523(0.042) 20.3%; 1.1% 21; 33
2iBN 0.619(0.039) 0.593(0.041) 21.6%; 4.3% 12; 49
0iBN Cor = 0.25 0.527(0.041) 0.467(0.045) 20.6%; 12.8% 19; 50
5iBNZ 0.468(0.053) 0.375(0.052) 21%; 24.8% 8; 49
0iBN Cor = 0.26 0.534(0.038) 0.494(0.044) 0.7%; 8% 40; 48
5iFN 0.485(0.050) 0.431(0.050) 20.2%; 12.5% 26; 49
2iBN Cor = 0.34 0.633(0.039) 0.576(0.045) 0.8%; 10% 37; 50
5iBNZ 0.477(0.050) 0.428(0.047) 0.9%; 11.2% 29; 46
2iBN Cor = 0.33 0.625(0.041) 0.555(0.044) 20.6%; 12.5% 18; 50
5iFN 0.479(0.051) 0.422(0.056) 21.4%; 13.5% 15; 49
5iBNZ Cor = 0.22 0.466(0.053) 0.406(0.056) 21.3%; 14.8% 15; 50
5iFN 0.483(0.051) 0.448(0.053) 20.6%; 8% 18; 48

All environments
0iBN 0.530(0.041) 0.483(0.048) 0%; 9.7% 24; 49
2iBN 0.625(0.042) 0.558(0.046) 20.5%; 12.1% 19; 50
5iBNZ 0.462(0.050) 0.366(0.051) 22.2%; 26.3% 13; 50
5iFN 0.470(0.049) 0.394(0.056) 23.3%; 19.2% 9; 50

TRN-TST, training-testing.
a

Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F
denotes whether the planting system was “bed” (B) or “flat” (F); N/H denotes whether planting date was
normal (N) or late (H, simulating heat); Z indicates no tillage.

b
Change in prediction accuracy of the M·E model relative to the prediction accuracy of the single-environment
(before semicolon) and relative to the prediction accuracy of the across-environment model (after semicolon).

c
Number of partitions (of 50) for which the M·E model gave greater accuracy than the single-environment
(before semicolon) and the across-environment model (after semicolon).
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planting dates (N/H) showed very low, and even negative, correla-
tions. Interestingly, environments 0iFN and 5iBH, which differ across
all factors, showed a moderate sample correlation (0.30).

Estimates of variance components
Table 3, Table 4, and Table 5 provide estimates of variance compo-
nents per model and environment for cycles W1, W2, and W3, re-
spectively. The estimates reported in these tables correspond to the
full-data analyses.

Stratified analysis: The proportion of variance explained by the
regression on markers (R2 computed based on estimates of variance
components) estimated from the stratified (single-environment) anal-
ysis ranged from moderate (�0.4) to high (�0.7); in general, models
fitted data better in W3 (Table 5) than in W1 or W2.

Across-environment model: The estimated residual variance of the
across-environment model was typically larger (and consequently the
R2 was lower) than that of the interaction model indicating that a sizable
proportion of the G·E went to the residual of the across-environment
model.

M·E model: In the interaction models, the total genomic variance can
be partitioned into a main effect and an interaction component. This
partition showed that the relative importance of the main effect was
greater when the environments analyzed jointly were positively
correlated. On the other hand, as one would expect, when the
environments analyzed jointly had low correlations, the estimated

interaction variance was greater. For instance, in W1, the analysis of
pairs of environments exhibiting sample phenotypic correlations
smaller than 0.3 (0iBN + 5iBNZ, 0iBN + 5iFN, and 5iBNZ + 5iFN)
yielded estimates of variance components in the M·E model where
the main effect explained less than 50% of the total genomic vari-
ance, computed as the sum of the main effect plus interaction var-
iance estimates (see Table 3). On the other hand, the pairs of
environments showing correlations larger than 0.3 (2iBN + 5iBNZ
and 2iBN + 5iFN) gave estimates of variance components where the
main effect explained between 50 and 70% of the genomic variance.
Finally, in W1, the pair of environments with the largest sample
phenotypic correlation (0iBN + 2iBN) had estimates of variance
components such that the main effect explained about 80% of the
total genomic variance.

Similar patterns were observed in W2 and W3. Indeed, in W2, the
main effects of markers explained more than 60% of the genomic
variance for pairs of environments having sample phenotypic
correlations greater than 0.33 (Table 4); on the other hand, in the
two environments showing a low correlation (0iFN + 5iBN), the main
effect explained only about 10% of the genomic variance. In W3 data
set, pairs of environments with sample phenotypic correlations
smaller than 0.1 had an estimated proportion of genomic variance
explained by main effects that was smaller than 0.2. At the other
extreme, for the pair of environments showing the greatest correlation
(5iBN + 5iFN), the proportion of variance explained by main effects
was close to 0.8 (Table 5). Finally, as expected, in the joint analysis of
all environments, the variance of the main effect was largest in W1
and W2 (0.316 and 0.436, respectively), where several pairs of

n Table 7 Estimated prediction accuracy (correlation between predicted and adjusted grain yield,
averaged over 50 TRN-TST partitions), cycle 2011-2012 (W2), CV1

Models/Environmentsa Correlation Change%b Numberc

Single environment
0iFN 0.471(0.043) 2 2
5iBH 0.425(0.056) 2 2
5iBN 0.509(0.054) 2 2
5iFN 0.451(0.055) 2 2

Pairs of environments Interaction Model Across-Env model
0iFN Cor = 0.34 0.454(0.043) 0.375(0.052) 23.6%; 21% 7; 50
5iBH 0.409(0.054) 0.339(0.060) 23.7%; 20.7% 7; 50
0iFN Cor=-0.05 0.471(0.044) 0.334(0.053) 0%; 41.2% 22; 50
5iBN 0.508(0.054) 0.353(0.058) 20.3%; 43.7% 17; 50
0iFN Cor = 0.31 0.453(0.045) 0.340(0.058) 23.8%; 33.3% 7; 50
5iFN 0.437(0.053) 0.345(0.056) 22.9%; 26.9% 14; 50
5iBH Cor = 0.33 0.427(0.055) 0.380(0.059) 0.4%; 12.3% 24; 47
5iBN 0.507(0.057) 0.455(0.066) 20.4%; 11.5% 23; 49
5iBH Cor = 0.41 0.420(0.055) 0.380(0.061) 21.2%; 10.3% 17; 47
5iFN 0.446(0.057) 0.411(0.058) 21%; 8.5% 21; 48
5iBN Cor = 0.41 0.500(0.054) 0.477(0.060) 21.8%; 4.9% 18; 45
5iFN 0.449(0.059) 0.438(0.058) 20.4%; 2.5% 23; 39

All environments
0iFN 0.438(0.044) 0.234(0.060) 27%; 87.7% 4; 50
5iBH 0.413(0.054) 0.356(0.067) 22.7%; 16.2% 16; 47
5iBN 0.489(0.055) 0.386(0.065) 24.1%; 26.6% 10; 50
5iFN 0.442(0.057) 0.396(0.059) 21.9%; 11.6% 14; 50

TRN-TST, training-testing.
a

Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes whether
the planting system was “bed” (B) or “flat” (F); N/H denotes whether planting date was normal (N) or late (H, simulating heat);
Z indicates no tillage.

b
Change in prediction accuracy of the M·E model relative to the prediction accuracy of the single-environment (before semi-
colon) and relative to the prediction accuracy of the across-environment model (after semicolon).

c
Number of partitions (of 50) for which the M·E model gave greater accuracy than the single-environment (before semicolon)
and he across-environment model (after semicolon).
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environments had sample phenotypic correlations that were moder-
ately high, and considerably smaller in W3 (0.113), where many pairs
of environments had phenotypic correlations that were negative or
close to zero.

Assessment of prediction accuracy
The average correlation and the estimated SD (both computed using
50 TRN-TST partitions, each with 70% of records in the TRN data set
and 30% in TST data set) obtained in CV1 are reported in Table 6,
Table 7, and Table 8 and those obtained in CV2 are reported in Table
9, Table 10, and Table 11. A summary of these results is given in
Figure 2. As one would expect, the levels of prediction accuracy (cor-
relation) were slightly greater in CV2 than in CV1. In CV1, the
stratified analysis and the interaction model performed similarly (av-
erage correlation of 0.48 and 0.47 for the stratified and interaction
models, respectively), and the across-environment analysis was the
worst one (the average correlation in CV1 was 0.33, that is about
30% lower correlation than the stratified analysis or the interaction

model). On the other hand, in CV2, the interaction model gave the
greatest levels of prediction accuracy (average correlation 0.53), this
method was followed by the stratified analysis (average correlation of
0.48, that is, about 10% less, in the scale of correlation, than the
interaction model), and the worst performing method was the
across-environment analysis (this method had an average correlation
in CV2 of 0.38, that is about 27% less than the interaction model).

Stratified analysis: The within-environment analysis yielded pre-
diction correlations ranging from moderately low (0.307 for environ-
ment 5iFN in W3) to moderately high (0.630 for environment 5iBH in
W3).

Across-environment analysis: Overall, this method was the worst
performing one. In CV1 the across-environment analysis performed
worse than the stratified analysis and the interaction model; this in
every environment and dataset. In CV2, the joint analysis of data from
different environments ignoring G·E performed worse than the

n Table 8 Estimated prediction accuracy (correlation between predicted and adjusted grain yield,
averaged over 50 TRN-TST partitions): cycle 201222013 (W3), CV1

Models/Environmentsa Correlation Change%b Numberc

Single environment
0iFN 0.561(0.035) 2 2
2iBN 0.445(0.051) 2 2
5iBH 0.628(0.037) 2 2
5iBN 0.360(0.046) 2 2
5iFN 0.312(0.055) 2 2

Pairs of environments Interaction Model Across-Env Model
0iFN Cor = 0.17 0.559(0.036) 0.411(0.049) 20.3%; 36.1% 18; 50
2iBN 0.445(0.051) 0.317(0.060) 0%; 40.4% 29; 49
0iFN Cor = 0.30 0.563(0.036) 0.466(0.042) 0.2%; 20.7% 34; 50
5iBH 0.626(0.037) 0.552(0.039) 20.3%; 13.4% 9; 50
0iFN Cor=-0.10 0.559(0.036) 0.356(0.048) 20.5%; 57.1% 13; 50
5iBN 0.360(0.046) 0.154(0.051) 20.1%; 134.2% 27; 50
0iFN Cor=-0.01 0.556(0.036) 0.400(0.045) 20.9%; 39% 8; 50
5iFN 0.311(0.054) 0.136(0.057) 20.5%; 129.5% 20; 50
2iBN Cor=-0.03 0.441(0.052) 0.236(0.049) 20.7%; 87.2% 11; 50
5iBH 0.625(0.037) 0.439(0.052) 20.4%; 42.3% 9; 50
2iBN Cor = 0.12 0.444(0.051) 0.370(0.049) 20.1%; 20.2% 27; 49
5iBN 0.361(0.046) 0.300(0.047) 0.2%; 20.2% 31; 48
2iBN Cor = 0.04 0.446(0.050) 0.345(0.052) 0.3%; 29.4% 31; 50
5iFN 0.313(0.054) 0.180(0.056) 0.1%; 73.7% 24; 50
5iBH Cor=-0.09 0.627(0.038) 0.451(0.051) 20.2%; 38.9% 14; 50
5iBN 0.358(0.046) 0.130(0.054) 20.6%; 174.4% 20; 50
5iBH Cor = 0.02 0.625(0.038) 0.485(0.046) 20.4%; 28.8% 10; 50
5iFN 0.305(0.053) 0.125(0.060) 22.2%; 144.1% 7; 50
5iBN Cor = 0.55 0.352(0.046) 0.316(0.052) 22.2%; 11.5% 15; 46
5iFN 0.309(0.053) 0.286(0.054) 21.2%; 7.9% 19; 42

All environments
0iFN 0.560(0.037) 0.311(0.049) 20.2%; 80.2% 21; 50
2iBN 0.443(0.051) 0.209(0.059) 20.4%; 112% 21; 50
5iBH 0.620(0.039) 0.333(0.059) 21.3%; 86.1% 0; 50
5iBN 0.357(0.046) 0.156(0.048) 20.7%; 129.4% 16; 50
5iFN 0.309(0.052) 0.111(0.064) 21.2%; 179.2% 15; 50

TRN-TST, training-testing.
a

Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes
whether the planting system was “bed” (B) or “flat” (F); N/H denotes whether planting date was normal (N) or late (H,
simulating heat); Z indicates no tillage.

b
Change in prediction accuracy of the M·E model relative to the prediction accuracy of the single-environment (before
semicolon) and relative to the prediction accuracy of the across-environment model (after semicolon).

c
Number of partitions (out of 50) for which the M·E model gave greater accuracy than the single-environment (before
semicolon) and the across-environment model (after semicolon).
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stratified analysis when the pairs of environments analyzed together
had a correlation lower than 0.3; however, the across-environment
model tended to outperform the stratified analysis whenever the cor-
relation between environments was larger than 0.4. On the other
hand, the across-environment model was systematically outperformed
by the M·E model both in CV1 and in CV2. In CV2, the difference
in prediction accuracy between these two methods was low when
the pairs of environments analyzed were positively correlated (e.g.,
in W1, environments 0iBN and 2iBN; see Table 9) and large, and
in favor of the M·E model, when the set of environments analyzed
were negatively correlated (e.g., in W3, in the joint analysis of 0iFN
and 5iBN).

M·E model: As previously stated, in CV1, the M·E model performed
similarly to the stratified analysis. However, in CV2, the joint analysis
of all environments using the M·E model gave, relative to the strat-
ified analysis, average gains in prediction accuracy ranging from 4.7 to
12.1% in W1, 4.1 to 29.6% in W2 and 20.2 to 22.3% in W3. The
patterns of gain/loss in prediction accuracy achieved in CV2 with the
M·E model, relative to the stratified analysis, were directly related to
the correlation between environments and to the proportion of geno-
mic variance explained by the main effects. Environments exhibiting
positive correlations with other environments benefited greatly from
the use of multienvironment models (e.g., 0iBN or 2iBN in W1, 5iBH
and 5iFN in W2, and 5iFN and 5iBN in W3). For these environments
in all 50 partitions, the multienvironment model fitted to all environments
jointly had higher prediction accuracy than the within-environment
model (Figure 2).

In CV2, the joint analysis of all environments using a M·E model
gave, in general, a greater prediction accuracy than the one achieved
with analyses of pairs of environments; this was particularly clear in
W1 and W2 (Table 9 and Table 10, respectively), with the only
exception of 5iBN in W2, where the average prediction accuracy
was slightly higher in the bivariate analysis than in the multienviron-
ment model applied to all environments jointly. The situation in W3
was slightly different; here, the predictive performance of analyses
based on pairs of environments was similar to that of the joint multi-
environment analysis of all conditions (Table 11).

DISCUSSION
Several studies have documented the benefits of using multienviron-
ment models, relative to single-environment analysis (Burgueño et al.
2012; Dawson et al. 2013; Jarquin et al. 2014). Multienvironment
analysis can model G·E interactions using covariance functions
(Burgueño et al. 2012), markers and environmental covariates
(Jarquin et al. 2014; Heslot et al. 2014) ,or by modeling M·E inter-
actions. In this article, we adapted this approach, previously used in
QTL models by Moreau et al.(2004), Van Eeuwijk et al. (2005), Boer
et al. (2007), and Malosetti et al. (2004, 2008), to whole-genome
regression models where phenotypes were regressed on large numbers
of genome-wide markers.

Relative to the standard multienvironment models with structured
or unstructured covariances such as those used by Burgueño et al.
(2012), the M·E model has advantages and disadvantages. On one
hand, the interaction model: (i) is easy to implement using existing
software for GS; (ii) leads to a decomposition of marker effects into

n Table 9 Estimated prediction accuracy: correlation between predicted and adjusted grain yield,
averaged over 50 TRN-TST partitions, cycle 201022011(W1), CV2

Model/Environmentsa Correlation (SE) Change%b Numberc

Single environment
0iBN 0.529(0.044) 2 2
2iBN 0.622(0.045) 2 2
5iBNZ 0.452(0.051) 2 2
5iFN 0.493(0.046) 2 2

Pairs of environments Interaction Model Across-Env Model
0iBN Cor = 0.53 0.599(0.036) 0.590(0.040) 13.3%; 1.5% 50; 36
2iBN 0.687(0.034) 0.664(0.037) 10.5%; 3.5% 50; 47
0iBN Cor = 0.25 0.547(0.040) 0.476(0.049) 3.5%; 14.9% 49; 50
5iBNZ 0.467(0.050) 0.380(0.051) 3.4%; 23.1% 48; 49
0iBN Cor = 0.26 0.544(0.038) 0.486(0.042) 3.0%; 12.0% 46; 48
5iFN 0.501(0.044) 0.452(0.048) 1.7%; 10.8% 45; 48
2iBN Cor = 0.34 0.661(0.037) 0.587(0.042) 6.3%; 12.6% 50; 50
5iBNZ 0.496(0.044) 0.445(0.040) 9.8%; 11.4% 49; 46
2iBN Cor = 0.33 0.648(0.043) 0.556(0.057) 4.2%; 16.5% 44; 50
5iFN 0.507(0.047) 0.456(0.054) 2.8%; 11.3% 47; 49
5iBNZ Cor = 0.22 0.476(0.052) 0.406(0.057) 5.4%; 17.2% 33; 50
5iFN 0.491(0.047) 0.450(0.062) 20.4%; 9.2% 35; 44

All environments
0iBN 0.591(0.040) 0.531(0.047) 11.8%; 11.3% 50; 50
2iBN 0.697(0.033) 0.645(0.034) 12.1%; 8.2% 50; 50
5iBNZ 0.505(0.047) 0.399(0.050) 11.9%; 26.8% 50; 50
5iFN 0.516(0.051) 0.429(0.059) 4.7%; 20.4% 41; 50

TRN-TST, training-testing.
a

Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes
whether the planting system was “bed” (B) or “flat” (F); N/H denotes whether planting date was normal (N) or late (H,
simulating heat); Z indicates no tillage.

b
Change in prediction accuracy of the M·E model relative to the prediction accuracy of the single-environment (before
semicolon) and relative to the prediction accuracy of the across-environment model (after semicolon).

c
Number of partitions (of 50) for which the M·E model gave higher accuracy than the single-environment (before semi-
colon) and the across-environment model (after semicolon).
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components that are stable across environments (main effects) and
environment-specific deviations (interactions) that can shed light on
which genomic regions are most responsible for G·E; and (iii) can
be implemented with any of the priors commonly used in GS,
including not only shrinkage methods such as the GBLUP, but
also variable selection methods. On the other hand, the M·E
model imposes restrictions on co-variance patterns: the covariance
between environments is forced to be positive and constant across
pairs of environments. Therefore, the M·E model is best suited for
the joint analysis of sets of environments that are positively and
similarly correlated. In those cases, the parsimony of the M·E
model can be advantageous; however, the pattern may be too re-
strictive in cases where the genomic variance cannot be approxi-
mated with the structure imposed by the interaction model (Meyer
and Kirkpatrick 2008).

Among the three data sets considered here, two of them, (W1 and
W2) had patterns of phenotypic (sample) correlations with moder-
ately positive correlations between pairs of environments, while the
third one (W3) exhibited a great deal of G·E, with some pairs of
environments exhibiting either null or negative sample phenotypic
correlations. The environments included in our data sets were man-
aged field conditions aiming to approximate three basic target sets of
environments (mega-environments) comprising three main agrocli-
matic regions previously defined and widely used by CIMMYT’s
Global Wheat Breeding Program (Braun et al. 1996). These three
agroclimatic regions are represented by megaenvironment 1 (low rain-
fall and irrigated), megaenvironment 4 (drought), and megaenviron-
ment 5 (heat). Results indicated that environments clustered more

along the lines of full irrigation, drought, and heat than based on
whether they include beds or flat planting systems, and zero or con-
ventional tillage.

Variance components
The M·E model fitted the data much better than the across-envi-
ronment model that ignored G·E. Furthermore, the estimates of variance
components from the M·E model indicated that the proportion of
genomic variance explained by the main effect of markers is directly
related to the (sample empirical) phenotypic correlation between envi-
ronments. Analytically, under the assumptions of the M·E model
described and used in this article, if y1i ¼ m1 þ u0i þ u1i þ e1i and
y2i ¼ m2 þ u0i þ u2i þ e2i are the equations for the phenotype of the
ith line in environments 1 and 2, respectively, then the phenotypic
correlation can be expressed as a function of variance components,

indeed Corðy1i; y2iÞ ¼ Covð y1i;y2iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð y1iÞVarð y2iÞ

p ¼ s2
u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
u0þs2

u1þs2
e

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
u0þs2

u2þs2
e

p . Fig-

ure 3 displays the estimated phenotypic correlations derived using
estimates of variance components obtained from analyses based on
pairs of environments (see Table 3, Table 4, and Table 5) vs. the
observed sample phenotypic correlations. Overall, the estimated phe-
notypic correlation based on variance components was linearly related
to the sample phenotypic correlation for pairs of environments having
positive sample phenotypic correlations. However, as the sample phe-
notypic correlation approached zero or became negative, the relation-
ship flattened out. This happens because, in the interaction model, the
covariance is represented by the variance of the main effects and,
therefore, it is bound to be non-negative.

n Table 10 Estimated prediction accuracy (correlation between predicted and adjusted grain yield,
averaged over 50 TRN-TST partitions, cycle 2011-2012 (W2), CV2

Models/Environmentsa Correlation (SE) Change%b Numberc

Single environment
0iFN 0.473(0.052) 2 2
5iBH 0.414(0.063) 2 2
5iBN 0.510(0.052) 2 2
5iFN 0.448(0.054) 2 2

Pairs of environments Interaction Model Across-Env Model
0iFN Cor = 0.34 0.512(0.042) 0.436(0.052) 8.3%; 17.5% 50; 47
5iBH 0.451(0.056) 0.386(0.054) 8.9%; 16.8% 50; 48
0iFN Cor=-0.05 0.467(0.043) 0.271(0.060) 21.2%; 72.2% 13; 50
5iBN 0.502(0.048) 0.279(0.056) 21.6%; 80.0% 6; 50
0iFN Cor = 0.31 0.520(0.043) 0.406(0.056) 9.8%; 27.9% 50; 49
5iFN 0.502(0.050) 0.412(0.060) 12.0%; 21.9% 50; 49
5iBH Cor = 0.33 0.477(0.053) 0.426(0.061) 15.2%; 11.8% 48; 47
5iBN 0.546(0.047) 0.483(0.051) 7.2%; 13.2% 47; 49
5iBH Cor = 0.41 0.500(0.049) 0.465(0.050) 20.9%; 7.7% 50; 45
5iFN 0.520(0.051) 0.490(0.055) 16.0%; 6.1% 50; 40
5iBN Cor = 0.41 0.558(0.050) 0.541(0.052) 9.6%; 3.2% 49; 43
5iFN 0.501(0.052) 0.490(0.055) 11.8%; 2.2% 50; 37

All environments
0iFN 0.513(0.044) 0.298(0.051) 8.5%; 72.6% 45; 50
5iBH 0.536(0.050) 0.481(0.047) 29.6%; 11.5% 50; 49
5iBN 0.531(0.044) 0.401(0.044) 4.1%; 32.4% 37; 50
5iFN 0.561(0.046) 0.523(0.049) 25.3%; 7.4% 50; 43

TRN-TST, training-testing.
a

Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes
whether the planting system was “bed” (B) or “flat” (F); N/H denotes whether planting date was normal (N) or late (H,
simulating heat); Z indicates no tillage.

b
Change in prediction accuracy of the M·E model relative to the prediction accuracy of the single-environment (before
semicolon) and relative to the prediction accuracy of the across-environment model (after semicolon).

c
Number of partitions (of 50) for which the M·E model gave greater accuracy than the single-environment (before semi-
colon) and the across-environment model (after semicolon).
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Prediction accuracy
The prediction analysis conducted in this study yielded levels of
accuracy (correlation between phenotypes and predicted genomic
values) that are consistent with previous reports for grain yield
prediction accuracy using single- and multi-environment models
(Burgueño et al. 2012). Overall, the interaction model was either the
best performing method (CV2) or performed close to the best per-
forming method (in CV1 the stratified analysis and the interaction
model performed similarly). These results are consistent with those of
previous studies (e.g., Burgueño et al. 2012; Jarquin et al. 2014) that
have used similar validation designs (CV1 and CV2) and have
reported similar predictive performance of the stratified and multi-
variate analysis in CV1, and clear superiority of the multivariate
approach in CV2. Additionally, we also considered an across-envi-
ronment analysis that ignores G·E. In our study this approach was
clearly the worst-performing one; this finding highlights the importance
of considering G·E when analyzing multi-environment data.

The gains in prediction accuracy obtained in CV2 with the M·E
model were directly related to the correlations between environments.

Considering environments that had positive phenotypic correlations
among them, the use of the M·E model yielded in CV2 gains, relative
to the stratified analysis, that were either moderate (on the order of
5%) or very substantial (on the order of 29%). In CV2 the only cases
where the stratified analysis was better than the interaction model are
those based on the joint analysis of pairs of environments that had
close to null or negative correlations (e.g., 5iBH in W3). This hap-
pened because, as discussed previously, the interaction model forces
the covariance between environments to be non-negative.

In prediction problems such as that of CV2, the superiority of the
M·E relative to the stratified analysis can be attributed to the fact that
the M·E model allows borrowing of information within line across
environments, that is: when deriving predictions for a given line, the
M·E model benefits from records from the same line collected in
correlated environments (this borrowing of information also happens
in the across-environment GBLUP; however, in the across-environ-
ment GBLUP borrowing of information within line across environ-
ments is achieved at the expense of forcing the effects to be constant
across environments). This feature of the M·E model can be exploited

n Table 11 Estimated prediction accuracy (correlation between predicted and adjusted grain yield,
averaged over 50 TRN-TST partitions, cycle 2012-2013, (W3), CV2

Models/Environmentsa Correlation (SE) Change%b Numberc

Single environment
0iFN 0.559(0.036) 2 2
2iBN 0.448(0.045) 2 2
5iBH 0.630(0.035) 2 2
5iBN 0.356(0.060) 2 2
5iFN 0.307(0.042) 2 2

Pairs of environments Interaction Model Across-Env Model
0iFN Cor = 0.17 0.573(0.037) 0.356(0.053) 2.4%; 61.2% 42; 50
2iBN 0.465(0.040) 0.294(0.051) 4.0%; 58.3% 48; 50
0iFN Cor = 0.30 0.581(0.035) 0.461(0.045) 3.8%; 25.9% 46; 50
5iBH 0.645(0.037) 0.512(0.044) 2.4%; 26.1% 37; 50
0iFN Cor=-0.10 0.553(0.037) 0.233(0.069) 21.2%; 136.7% 2; 50
5iBN 0.347(0.043) 0.058(0.052) 22.4%; 498.2% 8; 50
0iFN Cor=-0.01 0.555(0.035) 0.296(0.058) 20.8%; 87.5% 7; 50
5iFN 0.302(0.042) 0.087(0.060) 21.8%; 247.4% 26; 50
2iBN Cor=-0.03 0.444(0.051) 0.180(0.047) 20.8%; 146.8% 27; 50
5iBH 0.633(0.037) 0.337(0.052) 0.4%; 87.6% 13; 50
2iBN Cor = 0.12 0.446(0.048) 0.321(0.047) 20.3%; 39.2% 25; 50
5iBN 0.361(0.043) 0.279(0.048) 1.3%; 29.5% 31; 49
2iBN Cor = 0.04 0.446(0.049) 0.255(0.061) 20.4%; 74.6% 31; 50
5iFN 0.307(0.045) 0.142(0.057) 20.2%; 115.3% 31; 50
5iBH Cor=-0.09 0.623(0.038) 0.321(0.074) 21.1%; 94.1% 3; 50
5iBN 0.345(0.045) 0.037(0.058) 22.9%; 841.3% 9; 50
5iBH Cor = 0.02 0.627(0.038) 0.380(0.066) 20.5%; 65.1% 24; 50
5iFN 0.305(0.043) 0.106(0.059) 20.6%; 188.3% 29; 50
5iBN Cor = 0.55 0.609(0.050) 0.570(0.055) 71.2%; 7.0% 50; 49
5iFN 0.582(0.037) 0.542(0.043) 89.3%; 7.3% 50; 49

All environments
0iFN 0.575(0.034) 0.301(0.057) 2.7%; 90.9% 50; 50
2iBN 0.466(0.043) 0.217(0.052) 4.1%; 114.7% 43; 50
5iBH 0.629(0.035) 0.281(0.046) 20.2%; 124.3% 24; 50
5iBN 0.402(0.055) 0.243(0.054) 12.9%; 65.3% 50; 50
5iFN 0.376(0.041) 0.244(0.055) 22.3%; 53.8% 50; 49

TRN-TST, training-testing.
a

Environments are described by a sequence of codes: 0i, 2i, and 5i denote the number of irrigation cycles; B/F denotes
whether the planting system was “bed” (B) or “flat” (F); N/H denotes whether planting date was normal (N) or late (H,
simulating heat); Z indicates no tillage.

b
Change in prediction accuracy of the M·E model relative to the prediction accuracy of the single-environment (before
semicolon) and relative to the prediction accuracy of the across-environment model (after semicolon).

c
Number of partitions (out of 50) for which the M·E model gave greater accuracy than the single-environment (before
semicolon) and the across-environment model (after semicolon).
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in prediction problems such as CV2; however, such borrowing of
information within line is not possible in CV1 and, consequently,
the M·E model performs similarly to the stratified analysis for pre-
diction of performance of lines that have no phenotypic records.

How many environments?
The interaction model can be applied to all available environments or to
other sets (e.g., pairs) of environments. For data sets such as W1, where
all environments showed positive correlations of similar magnitude, the
joint analysis of all environments was clearly superior to analyses based
on pairs of environments. However, in data sets exhibiting complex co-
variance patterns (such as W3), joint analysis of all environments using

an interaction model imposes inadequate restrictions on co-variance
patterns and, consequently, bivariate analysis seems more appropriate.

Extensions
In our study, because of the limitations of the software used, we
implemented the M·E model in which the error variance was assumed
to be homogeneous across environments. In principle, the model can
be easily extended to accommodate environment-specific variances.

In this study, we presented and applied the interaction model using
Gaussian priors. We did this because the GBS marker data contain
a large proportion of missing values. However, with high-density panels
of high-quality markers (e.g., single-nucleotide polymorphisms) it
would make perfect sense to use other priors. For instance, it could be
used with priors that induce differential shrinkage of estimates or
variable selection (de los Campos et al. 2013); such treatment would
potentially aid in identifying sets of markers with effects that are stable
across environments and others that are responsible for G·E.

The M·E model presented in this article is an easy-to-implement
and easy-to-interpret approach for modeling G·E in genomic models.
The model allows decomposing marker effects and genomic variance
into components that are stable across environments (main effects)
and components that are environment-specific (interaction terms).
The model can be implemented easily using existing software for GS.
Predictions from the interaction model had either similar (CV1) or
greater (CV2) accuracy than the single-environment analysis and were
always more accurate than those derived from an across-environment
analysis that ignored G·E; therefore, the proposed model should be
useful for selection based on either stability (main effects only) or for
target environments (based on total genomic value). The interaction
model is not free of limitations; in particular, it is important to note
that the genetic covariance between any pair of environments is repre-
sented by the variance of the main effect; therefore, it is restricted to
being positive and the same for all pairs of environments analyzed
jointly. Therefore, the model should be more effective when applied
to subsets of environments that have positive and similar correlations.
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