The Complete Genome Sequence of the Staphylococcus Bacteriophage Metroid

Adele Crane,*† Joy Abaidoo,* Gabriella Beltran,* Danielle Fry,* Colleen Furey,* Noe Green,* Ravneet Johal,* Bruno La Rosa,* Catalina Lopez Jimenez,* Linh Luong,* Garett Maag,* Jade Porche,* Lauren Reyes,* Aspen Robinson,* Samantha Sabbara,* Lucia Soto Herrera,* Angelica Urquidez Negrete,* Pauline Wilson,* Kerry Geiler-Samerotte,*† and Susanne P. Pfeifer*†,1,2
*School of Life Sciences, †Center for Evolution and Medicine, and ‡Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ.
ORCID IDs: 0000-0001-5761-4271 (A.C.); 0000-0003-1378-2913 (S.P.P.)

ABSTRACT Phages infecting bacteria of the genus Staphylococcus play an important role in their host's ecology and evolution. On one hand, horizontal gene transfer from phage can encourage the rapid adaptation of pathogenic Staphylococcus enabling them to escape host immunity or access novel environments. On the other hand, lytic phages are promising agents for the treatment of bacterial infections, especially those resistant to antibiotics. As part of an ongoing effort to gain novel insights into bacteriophage diversity, we characterized the complete genome of the Staphylococcus bacteriophage Metroid, a cluster C phage with a genome size of 151kb, encompassing 254 predicted protein-coding genes as well as 4 tRNAs. A comparative genomic analysis highlights strong similarities – including a conservation of the lysis cassette – with other Staphylococcus cluster C bacteriophages, several of which were previously characterized for therapeutic applications.

Pathogens of the genus Staphylococcus, known for their ability to evade the human immune system, are an important public health concern causing a multitude of community-acquired infections ranging from food poisoning to skin lesions and life-threatening sepsis (Pollitt et al. 2018). As Staphylococcus largely reproduces clonally, much of the genetic diversity among strains stems from horizontal gene transfer through bacteriophages. Thereby, the acquisition of novel genes may not only aid adaptation of a bacterial strain to novel environments (Xia and Wolz 2014), but it can also increase pathogenicity. Bacteriophages play an important role in bacterial pathogenesis (Deghourain et al. 2012) as they encode for many known staphylococcal virulence factors (see review by Malachowa et al. 2018). As such, bacteriophages are promising new avenues for the treatment of antibiotic-resistant Staphylococcus infections through phage therapy (Moller et al. 2019). Approximately 10^30 bacteriophages are estimated to exist on our planet (Rohwer 2003), however much of their diversity remains under-sampled and therefore uncharacterized. Several Staphylococcus phages (order: Caudovirales; i.e., tailed dsDNA phages) have been isolated and sequenced (e.g., Kwan et al. 2005; Deghourain et al. 2012; Oliveira et al. 2019). Historically, Staphylococcus phages were grouped according to their lytic activity and serology; specifically, their reaction to (among others) polyclonal antiserum (Rountree 1949; Rippon 1952, 1956). In contrast, modern phage classification systems are based on either: 1) morphology (determined using transmission electron microscopy), categorizing Myoviridae (long, contractile tail; group A), Siphoviridae (long, non-contractile tail; group B), and Podoviridae (short tail; group C) (Ackermann 1975; Brandis and Lenz 1984); 2) genome size, categorizing class I (<20kb), class II (~40kb), and class III (>125kb) (Kwan et al. 2005); or 3) gene homology (Goerke et al. 2009; Kahánková et al. 2010; McCarthy et al. 2012), with phages of like category generally being more closely related to one another (Kwan et al. 2005). In one of the largest Staphylococcus phage genomic studies published to date,
Oliveira et al. (2019) used a comparative evolutionary approach to group Staphylococcus phages according to their content: cluster A (morphologically Podoviridae; genome size: 16-18kb), cluster B (a diverse cluster consisting of mostly temperate phages; genome size: 39-48kb), cluster C (morphologically Myoviridae; genome size: 127-152kb), and cluster D (morphologically Siphoviridae; genome size 89-93kb). Based on predicted sequence similarities of protein families (phams), the authors further subdivided Staphylococcus phages into 27 subclusters (A1-A2, B1-B17, C1-C6, and D1-D2), members of which exhibit similar morphology and genomic features (i.e., genome size, GC-content, and number of genes; Oliveira et al. 2019). In contrast to the usually temperate Siphoviridae, most Myoviridae and Podoviridae experimentally characterized to date exhibit a lytic life cycle. Lytic phages destroy their host cells, making them interesting candidates for phage therapy (Xia and Wolz 2014).

Here, we report the complete genome sequence of the Staphylococcus bacteriophage Metroid, a Myoviridae sequenced as part of HHMI's SEA-PHAGES program - an ongoing effort to systematically characterize bacteriophages and their relationship to their (often pathogenic) bacterial hosts. A comparative genomic analysis highlights strong similarities with other Staphylococcus cluster C bacteriophages, several of which were previously characterized for therapeutic applications (Vandersteegen et al. 2011; Gill 2014; Leskinen et al. 2017; Azuebro et al. 2018; Philipson et al. 2018).

MATERIALS AND METHODS

Sample collection and isolation

To locate phage, ~50 soil samples were collected from various locations in Arizona and plaque assays were performed on the sample filtrates. Most samples did not produce phage that could infect the host bacteria. The sample that produced Metroid was collected from a shaded and well-irrigated garden on Arizona State University’s Tempe campus (33.417708N, 111.935974W; ambient temperature 37.7°C). The soil was loosely packed into half of a 15 mL conical tube and stored at 4°C until phage isolation and a plaque assay were performed. In order to isolate bacteriophages, the sample was subcultured in 10 mL PYCa liquid media (1 g/L of yeast extract, 15 g/L of tryptone, 4.5 mM CaCl2, 0.1% dextrose, 10 μg/mL cycloheximide), vortexed for one minute, and placed in a shaking incubator at room temperature for 30 min. This sample was then centrifuged at 4500 rpm for four minutes and filter-sterilized with a 0.22 μm syringe filter. A 250 μL sample of this filtrate was mixed with 250 μL of host bacteria. The host bacteria was isolated as a contaminant from frozen cultures of Arthrobacter globiformis. We suspect it to be of the genus Staphylococcus given that it possesses phage known to reside in this genus. After mixing with the filtered soil sample, the host bacteria had been grown to saturation in PYCa and stored at 4°C. After a ten minute incubation at room temperature, the 500 μL of phage plus bacteria was added to 4.5 mL molten PYCa top agar (60°C) and immediately plated on a PYCa agar plate which was incubated for 48 hr at 37°C.

Purification and amplification

Clear plaques appeared on the PYCa plates after 48 hr and were ~3 mm in diameter. One plate was picked with a sterile pipette tip, and phage were resuspended in phage buffer (10 mM Tris, 10 mM MgSO4, 68 mM NaCl, ddH2O, 1 mM CaCl2), and a series of six 10-fold serial dilutions were performed. Each dilution was inoculated with 250 μL of host bacteria and incubated at room temperature for ten minutes. Each dilution was plated with 4.5 mL PYCa top agar and incubated at 37°C for 48 hr. A plaque from the plate representing the 10−2 dilution was selected to complete two additional rounds of purification through subsequent dilutions and plaque assays. For each purification, we chose to pick plaques from a ‘countable’ plate, on which plaques were separated enough to suggest that each grew from a single phage particle (typically a countable plate had 30 to 300 plaques).

Once purified, we amplified the phage to obtain a titer greater than 1x1010 PFU/mL which would provide enough DNA for genome sequencing. A plate containing numerous purified phage plaques was flooded with 8 mL of phage buffer and set at room temperature for an hour to yield a phage lysate. The lysate was collected in a 15 mL tube and centrifuged at 8000 rpm for four minutes then filtered through a 3 mL syringe with a 0.22 μL filter. 10-fold serial dilutions were made with the collected lysate for amplification. A spot titer was made with the undiluted lysate as well as 10−1 to 10−10 lysate dilutions. Based on counting the number of plaques formed by each lysate in the spot titer assay, the 10−8 dilution was selected as the best candidate to produce a countable plate. A full titer plate was prepared with the 10−7, 10−8, and 10−9 dilutions. The titer calculated from the full titer assay was 2.65x1010 PFU/mL.

Phage characterization – DNA extraction

DNA extraction was performed on the phage lysate using the Wizard DNA Clean-Up kit (Promega) with minor modifications. 5 μL of nuclease mix (150 mM NaCl, ddH2O, 0.25 mg/mL DNase 1, 0.25 mg/mL RNase A, 50% glycerol) was added to 1 μL of lysate and mixed by inversion. The solution was incubated at 37°C for ten minutes. 15 μL of 0.5 M EDTA and 1 μL of 20 mg/mL Proteinase K were added to the solution and incubated at 37°C for 20 min. 2 mL of Wizard DNA Clean-Up resin (Promega) was added to the solution and mixed by inversion for two minutes. The solution was syringed-filtered through two Wizard Genomic DNA columns (Promega) and then washed three times with 80% isopropanol. The columns were twice spun in a centrifuge at top speed for two minutes and then placed in a 90°C heat block for one minute. 50 μL of ddH2O was used for elution. Final elutes were combined for 100 μL of total DNA extract. A Nanodrop ND 1000 was used to determine a DNA concentration of 114.9 ng/μL.

Phage characterization – Transmission Electron Microscopy

A high-titer lysate was made up for Transmission Electron Microscopy (TEM) by spinning 100 μL of phage lysate in a 4°C Centrifuge at top speed for 22 min. The supernatant was removed and the pellet was resuspended in 10 μL of phage buffer. The high-titer lysate then underwent TEM preparation by negatively staining the virus particles. Specifically, isolated particles were adhered to a 300-mesh carbon-formvar grid for one minute, followed by staining with 1% aqueous uranyl acetate for 30 sec. Images were acquired using a
S. aureus
K 148,317 233 4 30.39
vB_SauM-fRuSau02 148,464 236 4 30.22
S. aureus
JA1 147,135 233 4 30.25
S. aureus
IME-SA1 140,218 209 4 30.33
S. aureus
vB_SauM_0414_108 (Philipson et al. 2011)

Comparative genomics analysis
Due to their similar length, number of genes and tRNAs, as well as GC-content, the genomes of the phages IME-SA1, IME-SA2, ISP (Vandersteegen et al. 2011), JA1 (Ajuebor et al. 2018), K (Gill 2014), vB_SauM_0414_108 (Philipson et al. 2018), and vB_SauM-fRuSau02 (Leskinen et al. 2017) were downloaded from GenBank (Table 1) to create a database of Staphylococcus cluster C1 phages (Oliveira et al. 2019) using PhamDB (Lamine et al. 2016). This custom database was used for all subsequent comparative analyses. First, a multiple sequence alignment was performed utilizing Kalign v.1.04 (Lassmann and Sonnhammer 2005) to produce a neighbor-joining tree. Second, dotplots, comparing the relatedness of different nucleotide sequences, were generated in 100bp sliding windows using Gepard v.1.40 (Krumies et al. 2007). Lastly, the database was loaded into Phamerator (Cresawn et al. 2011) to visually compare phage genomes.

RESULTS AND DISCUSSION
The complete genome sequence of the Staphylococcus bacteriophage Metroid was sequenced and annotated (see “Materials and Methods” for details). The Myoviridae morphology (i.e., an icosahedral capsid [diameter: 100nm] enclosing the double-stranded DNA attached to a long, contractile tail [length: 108nm]; Figure 1a) as well as the genome size of 151kb (including the ~10kb terminal repeat) suggests that Metroid belongs to the Staphylococcus phage cluster C. Metroid’s genome has a GC-content of 30.40%, similar to those of previously published Staphylococcus phages (27.98–34.96%) (Kwan et al. 2005; Degrhorain et al. 2012; Oliveira et al. 2019). The tightly-packed genome contains 254 predicted protein-coding genes as well as 4 tRNAs, most of which are transcribed on the forward strand (Figure 1b). This corresponds to a gene density of 1.68 genes/kb – on the upper end of the range previously reported for cluster C phages (164-249 genes; 0-5 tRNAs; 1.25-1.64 genes/kb) (Oliveira et al. 2005). Although the overall gene coding potential of Metroid is 89.42%, only 26 of the 254 predicted proteins could be assigned a putative function. The majority of predicted proteins are either conserved but of no known function (170 out of 254), membrane proteins (22), or unique (i.e., without a match to any of the queried databases: 1). As previously observed in other Staphylococcus phages (Kwan et al. 2005), functionally related genes are organized into distinct modules (e.g., distinct head and tail modules connected by a head-to-tail adapter; Figure 1b), the respective order of which is largely conserved across phages of the same category.

Complementing the classification by morphology and genome size, comparative genomic analysis with seven Staphylococcus sub-cluster C1 phages highlights a strong relatedness on the sequence
level (Figures 1c,d) and thus, provides additional evidence for the assignment of Metroid to cluster C. Metroid is most closely related to vB_SauM_0414_108 (Figures 1c,d) – a phage discovered as part of a recent effort proposing a guideline and standardized workflow to submit phages to the Federal Drug Administration to be considered as potential future treatments of bacterial infections (Philipson et al. 2018). More generally, genes in the lysis cassettes show a strong conservation between Metroid and the closely-related Staphylococcus phages, K (Gill 2014) and vB_SauM_0414_108 (Philipson et al. 2018), which both share 99% amino acid identity with Metroid for endolysin and >97% amino acid identity for holin (Figure 3e). Both phages were previously characterized for therapeutic research, suggesting that Metroid might be a suitable candidate for future phage therapies.

ACKNOWLEDGMENTS

This study was supported by the Howard Hughes Medical Institute SEA-PHAGES program and Arizona State University’s School of Life Sciences. DNA concentration was determined in the Arizona State University DNA Shared Resource Facility. Library preparation and sequencing was performed at the University of Pittsburgh. Computations were partially performed at Arizona State University’s High Performance Computing facility. We are grateful to David Lowry for transmission electron microscopy imaging, Suhail Ghafoor for IT support, Billy Biederman, Graham Hatfull, Deborah Jacobs-Sera, Welkin Pope, Daniel Russell, and Vic Sivanathan for library preparation, sequencing, and assembly as well as providing faculty training for the SEA-PHAGES program and guidance with our genome annotation.