Skip to main content
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus
  • Other GSA Resources
    • Genetics Society of America
    • Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org
  • Log in
G3: Genes | Genomes | Genetics

Main menu

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Contact us
  • SERIES
    • All Series
    • Genomic Prediction
    • Multiparental Populations
  • ARTICLE TYPES
    • About Article Types
    • Genome Reports
    • Meeting Reports
    • Mutant Screen Reports
    • Software and Data Resources
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Email alerts
    • RSS feeds
  • Other GSA Resources
    • Genetics Society of America
    • Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org

User menu

Search

  • Advanced search
G3: Genes | Genomes | Genetics

Advanced Search

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Contact us
  • SERIES
    • All Series
    • Genomic Prediction
    • Multiparental Populations
  • ARTICLE TYPES
    • About Article Types
    • Genome Reports
    • Meeting Reports
    • Mutant Screen Reports
    • Software and Data Resources
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Email alerts
    • RSS feeds
Previous ArticleNext Article

The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

Devin R. Scannell, Oliver A. Zill, Antonis Rokas, Celia Payen, Maitreya J. Dunham, Michael B. Eisen, Jasper Rine, Mark Johnston and Chris Todd Hittinger
G3: Genes, Genomes, Genetics June 1, 2011 vol. 1 no. 1 11-25; https://doi.org/10.1534/g3.111.000273
Devin R. Scannell
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oliver A. Zill
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: zill@berkeley.edu cthittinger@wisc.edu
Antonis Rokas
Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Celia Payen
Department of Genome Sciences, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maitreya J. Dunham
Department of Genome Sciences, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael B. Eisen
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jasper Rine
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Johnston
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045-2530Center for Genome Sciences, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108-2212
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris Todd Hittinger
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045-2530Center for Genome Sciences, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108-2212
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: zill@berkeley.edu cthittinger@wisc.edu
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
Loading

Article Figures & Data

Figures

  • Tables
  • Additional Files
  • Figure 1 
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1 

    Resequencing and assembling the genomes of three Saccharomyces species. (A) Schematic showing phylogenetic relationships among nonhybrid members of the Saccharomyces sensu stricto genus plus the outgroup Kluyveromyces lactis based on (Kurtzman and Robnett 2003), (Nieduszynski and Liti 2011), and (Libkind, Hittinger et al., unpublished data). Branch lengths are not proportional to sequence divergence. The branch on which the whole-genome duplication occurred is marked. (B) Schematic depicting co-assembly of genomes from Illumina short-insert paired-end reads and mate-pair Sanger shotgun reads. Illumina reads were used to build contigs, which were stitched into scaffolds using mate-pair reads from the longer-insert Sanger libraries. Scaffolds were then joined into ultra-scaffolds (contiguous with chromosomes) using MEGABLAST and manual scaffold ordering.

  • Figure 2 
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2 

    Genes exhibiting lineage-specific rates of evolution in the Saccharomyces sensu stricto genus. (A) The three alternative hypotheses designed to test whether genes are evolving at a different rate in each of five species of the Saccharomyces sensu stricto genus. Under hypothesis H0 all branches of the tree exhibit the same ω ratio of nonsynonymous to synonymous substitutions. Under the set of H1 hypotheses, the ω ratio along a given species’ branch is different from that along all other branches of the tree. Under the H2 hypothesis, each branch exhibits its own ω ratio. (B) Numbers of genes with lineage-specific rates of evolution in the Saccharomyces sensu stricto genus.

  • Figure 3 
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3 

    Relaxed molecular clock estimation of relative species divergence within the Saccharomyces sensu stricto genus. The top scale bar and the values above branches denote estimated substitutions per site. The bottom scale bar expresses species divergence in percentage points relative to the origin of the genus.

Tables

  • Figures
  • Additional Files
  • Table 1  Short-read library statistics
    Library Insert (bp)Read Length (bp)Assembly KmerFold Coverage
    RawProcessedaKmer
    S. bayanus (CBS 7001)4375131140.7109.545.1
    S. kudriavzevii (IFO 1802T)20311461272.2202.595.9
    S. kudriavzevii (ZP 591)22311461269.4207.898.4
    S. mikatae (IFO 1815T)2598061379.2267.967.0
    • Coverage calculated assuming a genome size of 12.1Mb.

    • ↵a Read pool after reads failing quality criteria were trimmed, corrected, or discarded. The relevant procedure is described in Materials and Methods.

  • Table 2  Genome assembly summary statistics, before and after manual ordering of scaffolds
    Unordered Assembly (Scaffolds)Ordered Assembly (Ultra-scaffolds)Percentage of Assemblya
    NumberBasesN50GapsNumberBasesN50Gaps
    S. bayanus (CBS 7001)629 (147)11,668,028444,5513801611,467,582905,55539498.3%
    S. kudriavzevii (IFO 1802T)1455 (226)11,736,856151,185171611,294,830882,33711196.2%
    S. kudriavzevii (ZP 591)1523 (164)11,642,553100,201101611,185,947882,20316296.2%
    S. mikatae (IFO 1815T)1220 (159)11,922,798360,232181611,445,471800,8235296.0%
    • Numbers in parentheses indicate scaffolds longer than 500 bp.

    • ↵a Percentage of base pairs in the unordered assembly that are also present in the ordered assembly. Neither contigs with an average Kmer coverage less than 20 nor gaps in scaffolds (i.e., N bases) were counted toward assembly statistics.

  • Table 3  Counts of annotated tRNA and protein-coding genes across representative strains of five Saccharomyces species
    tRNAsProtein-Coding Genes (by Homology)aTotal
    YGOBSGDOther
    S. cerevisiae2755490881336679
    S. paradoxus2735440745466504
    S. mikatae2915454510516306
    S. kudriavzevii2805450409486187
    S. bayanus2795559432486318
    Orthogroupsb229514112005490
    • S. kudriavzevii is represented by IFO 1802T.

    • ↵a Protein-coding gene counts are subdivided by homology to families in the Yeast Gene Order Browser (YGOB) (Byrne and Wolfe 2005), genes annotated in the Saccharomyces Genome Database (SGD) (Engel et al. 2010), or other protein databases (Other) (see Materials and Methods).

    • ↵b Each column shows the number of genes for which syntenic orthologs were detected in all five species.

  • Table 4  Genes not previously reported in the Saccharomyces sensu stricto
    Representative Gene(s)HomologPresence PatternaFunctional Annotation
    Smik_18.9 KLTH0F001100:0:1:0:0S-adenosylmethionine-dependent methyltransferase; weak homolgy to Anc_8.241
    Sbay_15.364Anc_5.740:0:0:0:1Uncharacterized
    (YJR107C-A)Anc_7.4951:1:1:1:1Not annotated in SGD. dN/dS = 0.29; between YJR107W/YJR108W
    Sbay_10.240Anc_8.3500:0:0:0:1Uncharacterized
    Spar_6.12Anc_8.6630:1:1:1:1Nonsyntenic; uncharacterized
    Sbay_13.12Anc_8.8690:0:0:0:1Uncharacterized
    Sbay_13.48Anc_8.8800:0:0:0:1Endoribonuclease in the RNase III family (budding yeast Dicer)b
    Sbay_15.267CAGL0J10714g0:0:0:0:1Syntenic homolog. dN/dS = 0.33; also annotated in N. castellii
    Smik_10.15RCFBP_mp203230:0:1:0:0NTF2_like superfamily; similar to RCFBP_mp20323 from Ralstonia solanacearum
    Smik_29.1/Spar_12.256CGSSp3BS71_000100:1:1:0:0Similar to CGSSp3BS71_00010 from Streptococcus pneumoniae
    Sbay_15.427Kwal_8.5760:0:0:0:1Nitrilase superfamily
    Sbay_17.1SAKL0C00330g0:0:0:0:1Hyphal_reg_CWP superfamily
    • ↵a Number of detected copies in S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii (IFO1802T), and S. bayanus, respectively.

    • ↵b Budding yeast Dicer was described in (Drinnenberg et al. 2009)

  • Table 5  Loss of duplicate genes from the ancient whole-genome duplication in the Saccharomyces sensu stricto clade
    S. cerevisiae Gene(s)YGOB LocusRetention PatternaFunctional Annotation
    YCL048W-A / YDR524C-BAnc_1.222:1:1:1:2Uncharacterized
    YFR017C / YOL024WAnc_1.3632:2:1:2:2Predicted to have thiol-disulfide oxidoreductase active site
    ECM10/SSC1Anc_1.4742:2:1:2:2Hsp70 family; localized in mitochondrial nucleoids; plays a role in protein translocation
    GAL80Anc_1.5001:1:1:1:2Inhibits transcriptional activation by Gal4p
    HEK2Anc_3.3181:1:1/ψ:2:2RNA binding protein with similarity to hnRNP-K; localizes to the cytoplasm and subtelomeric DNA
    PMT4Anc_4.3791:1:1:1:2Protein amino acid O-linked glycosylation
    SLT2 / YKL161CAnc_5.2742:2:1:2:2Serine/threonine MAP kinase involved in regulating the maintenance of cell wall integrity
    CAD1/YAP1Anc_5.5282:2:2:2:1AP-1-like basic leucine zipper (bZIP) transcriptional activator involved in stress responses, iron metabolism, and pleiotropic drug resistance
    YML020WAnc_5.5541:2:1/ψ:1/ψ:1/ψUncharacterized
    YDR066C / YER139CAnc_8.1812:2:2:1:2Uncharacterized
    SSU1Anc_8.5691:2:1:1:1Plasma membrane sulfite pump
    ARL1Anc_8.5971/ψ:1/ψ:1:1/ψ:2Soluble GTPase with a role in regulation of membrane traffic
    URA5/URA10Anc_8.8272:2:1:2:2Phosphoribosyltransferase; fifth step in pyrimidine biosynthesis pathway
    • ↵a Number of detected copies or pseudogenes (ψ) in S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, respectively.

  • Table 6  Construction of heterothallic haploid strains with auxotrophic markers for S. mikatae, S. kudriavzevii and S. bayanus
    SpeciesStrainOriginalGenotypeReference
    S. mikataeJRY9171IFO 1815TMATa hoΔ::KanMX ura3Δ::HygMXThis study
    S. mikataeJRY9172IFO 1815TMATα hoΔ::KanMX ura3Δ::HygMXThis study
    S. mikataeJRY9173IFO 1815TMATa hoΔ::NatMX ura3Δ::HygMXThis study
    S. mikataeJRY9174IFO 1815TMATα hoΔ::NatMX ura3Δ::HygMXThis study
    S. mikataeJRY9175IFO 1815TMATa hoΔ::KanMX his3Δ::HygMXThis study
    S. mikataeJRY9176IFO 1815TMATα hoΔ::NatMX trp1Δ::HygMXThis study
    S. mikataeJRY9177IFO 1815TMATa hoΔ::KanMX his3Δ::HygMX ura3Δ::HygMXThis study
    S. mikataeJRY9178IFO 1815TMATα hoΔ::KanMX his3Δ::HygMX ura3Δ::HygMXThis study
    S. mikataeJRY9179IFO 1815TMATa hoΔ::NatMX his3Δ::HygMX ura3Δ::HygMXThis study
    S. mikataeJRY9180IFO 1815TMATα hoΔ::NatMX his3Δ::HygMX ura3Δ::HygMXThis study
    S. mikataeJRY9181IFO 1815TMATa hoΔ::KanMX trp1Δ::HygMX ura3Δ::HygMXThis study
    S. mikataeJRY9182IFO 1815TMATα hoΔ::KanMX trp1Δ::HygMX ura3Δ::HygMXThis study
    S. mikataeJRY9183IFO 1815TMATa hoΔ::NatMX trp1Δ::HygMX ura3Δ::HygMXThis study
    S. mikataeJRY9184IFO 1815TMATα hoΔ::NatMX trp1Δ::HygMX ura3Δ::HygMXThis study
    S. kudriavzeviiFM1097IFO 1802TMATα hoΔ::natMXHittinger et al. 2010
    S. kudriavzeviiFM1098IFO 1802TMATa hoΔ::natMXHittinger et al. 2010
    S. kudriavzeviiFM1363IFO 1802TMATα hoΔ::kanMXThis study
    S. kudriavzeviiFM1403IFO 1802TMATa/MATα hoΔ::kanMX/hoΔ::kanMXThis study
    S. kudriavzeviiFM1122IFO 1802TMATα hoΔ::natMX ura3Δ0This study
    S. kudriavzeviiFM1141IFO 1802TMATα hoΔ::natMX ura3Δ0 trp1Δ::ScerURA3+This study
    S. kudriavzeviiFM1388IFO 1802TMATα hoΔ::natMX ura3Δ0 his3Δ0This study
    S. kudriavzeviiJRY9185IFO 1802TMATa hoΔ::natMX ura3Δ0This study
    S. kudriavzeviiJRY9186IFO 1802TMATα hoΔ::natMX trp1Δ0This study
    S. kudriavzeviiJRY9187IFO 1802TMATa hoΔ::natMX trp1Δ0 ura3Δ0This study
    S. kudriavzeviiJRY9188IFO 1802TMATα hoΔ::natMX trp1Δ0 ura3Δ0This study
    S. kudriavzeviiFM1109ZP 591MATa hoΔ::kanMXHittinger et al. 2010
    S. kudriavzeviiFM1110ZP 591MATα hoΔ::kanMXHittinger et al. 2010
    S. kudriavzeviiFM1071ZP 591MATa/MATαHittinger et al. 2010
    S. kudriavzeviiFM1158ZP 591MATa/MATαThis study
    S. kudriavzeviiFM1400ZP 591MATa/MATα hoΔ::kanMX/hoΔ::kanMXThis study
    S. kudriavzeviiFM1340ZP 591MATa hoΔ::natMX ura3Δ0Hittinger et al. 2010
    S. kudriavzeviiFM1123ZP 591MATa hoΔ::kanMX ura3Δ0Hittinger et al. 2010
    S. kudriavzeviiFM1192ZP 591MATα hoΔ::kanMX ura3Δ0This study
    S. kudriavzeviiFM1194ZP 591MATa hoΔ::kanMX trp1Δ0This study
    S. kudriavzeviiFM1131ZP 591MATα hoΔ::kanMX trp1Δ0Hittinger et al. 2010
    S. kudriavzeviiFM1183ZP 591MATa hoΔ::kanMX ura3Δ0 trp1Δ0Hittinger et al. 2010
    S. kudriavzeviiFM1193ZP 591MATα hoΔ::kanMX ura3Δ0 trp1Δ0This study
    S. kudriavzeviiFM1389ZP 591MATa hoΔ::kanMX ura3Δ0 his3Δ0This study
    S. bayanusJRY9189CBS 7001MATa hoΔ::NatMXThis study
    S. bayanusJRY9190CBS 7001MATα hoΔ::NatMXThis study
    S. bayanusJRY8149CBS 7001MATa hoΔ::NatMX his3 lys2 ura3Gallagher et al. 2009
    S. bayanusJRY8150CBS 7001MATα hoΔ::NatMX his3 lys2 ura3Gallagher et al. 2009
    S. bayanusJRY8153CBS 7001MATa hoΔ::NatMX his3 lys2 trp ura3Gallagher et al. 2009
    S. bayanusJRY8154CBS 7001MATα hoΔ::NatMX his3 lys2 trp ura3Gallagher et al. 2009
    S. bayanusJRY8147CBS 7001MATa hoΔ::NatMX ade2 his3 lys2 ura3Gallagher et al. 2009
    S. bayanusJRY8148CBS 7001MATα hoΔ::NatMX ade2 his3 lys2 ura3Gallagher et al. 2009
    S. bayanusJRY9191CBS 7001MATa hoΔ::NatMX his3 ura3This study
    S. bayanusJRY9040CBS 7001MATa hoΔ::NatMX lys2 ura3Zill et al. 2010
    S. bayanusJRY9192CBS 7001MATa hoΔ::NatMX ade2 ura3This study
    S. bayanusJRY9193CBS 7001MATα hoΔ::NatMX ade2 ura3This study
    S. bayanusJRY9194CBS 7001MATa hoΔ::loxP his3 lys2 ura3This study
    S. bayanusJRY9195CBS 7001MATα hoΔ::loxP his3 lys2 ura3This study
    • All strains are available upon request from C. T. Hittinger.

Additional Files

  • Figures
  • Tables
  • Supporting Information for Scannell et al., 2011

    Files in this Data Supplement:

    • Supporting Information - Figure S1, Files S1 and S2, and Tables S1-S3 (PDF, 756 KB)
    • Figure S1 - Multiple sequence alignment of centromeres from (A) S. bayanus, (B) S. mikatae, and S. kudriavzevii (C) IFO 1802T and (D) ZP 591 (PDF, 588 KB)
    • Table S2 - YGOB-HMM families detected in representative strains of five Saccharomyces species (PDF, 52 KB)
    • File S1 - Likelihood-ratio tests for variation in selection pressure along the branches of the Saccharomyces sensu stricto phylogeny in 5,152 orthologs (Microsoft Excel, .xls, 2.7 MB)
    • File S2 - Complete lists of candidate gene gains and losses detected by computational screens in five Saccharomyces species (Microsoft Excel, .xls, 48 KB)
    • Table S1 - Genes orthologous among representative strains of five Saccharomyces sensu stricto yeast species (Microsoft Excel, .xls, 2.9 MB)
    • Table S3 - tRNA gene content in representative strains of five Saccharomyces species as detected by tRNAScan-SE (Microsoft Excel, .xls, 24 KB)
Previous ArticleNext Article
Back to top

PUBLICATION INFORMATION

Volume 1 Issue 1, June 2011

G3: Genes, Genomes, Genetics: 1 (1)

ARTICLE CLASSIFICATION

Investigation
View this article with LENS
Email

Thank you for sharing this G3: Genes | Genomes | Genetics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus
(Your Name) has forwarded a page to you from G3: Genes | Genomes | Genetics
(Your Name) thought you would be interested in this article in G3: Genes | Genomes | Genetics.
Print
Alerts
Enter your email below to set up alert notifications for new article, or to manage your existing alerts.
SIGN UP OR SIGN IN WITH YOUR EMAIL
View PDF
Share

The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

Devin R. Scannell, Oliver A. Zill, Antonis Rokas, Celia Payen, Maitreya J. Dunham, Michael B. Eisen, Jasper Rine, Mark Johnston and Chris Todd Hittinger
G3: Genes, Genomes, Genetics June 1, 2011 vol. 1 no. 1 11-25; https://doi.org/10.1534/g3.111.000273
Devin R. Scannell
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oliver A. Zill
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: zill@berkeley.edu cthittinger@wisc.edu
Antonis Rokas
Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Celia Payen
Department of Genome Sciences, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maitreya J. Dunham
Department of Genome Sciences, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael B. Eisen
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jasper Rine
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Johnston
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045-2530Center for Genome Sciences, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108-2212
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris Todd Hittinger
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045-2530Center for Genome Sciences, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108-2212
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: zill@berkeley.edu cthittinger@wisc.edu
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation

The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

Devin R. Scannell, Oliver A. Zill, Antonis Rokas, Celia Payen, Maitreya J. Dunham, Michael B. Eisen, Jasper Rine, Mark Johnston and Chris Todd Hittinger
G3: Genes, Genomes, Genetics June 1, 2011 vol. 1 no. 1 11-25; https://doi.org/10.1534/g3.111.000273
Devin R. Scannell
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oliver A. Zill
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: zill@berkeley.edu cthittinger@wisc.edu
Antonis Rokas
Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Celia Payen
Department of Genome Sciences, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maitreya J. Dunham
Department of Genome Sciences, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael B. Eisen
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jasper Rine
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720-3220
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Johnston
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045-2530Center for Genome Sciences, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108-2212
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris Todd Hittinger
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045-2530Center for Genome Sciences, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108-2212
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: zill@berkeley.edu cthittinger@wisc.edu

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Related Articles

Cited By

More in this TOC Section

  • Genomic Predictive Ability for Foliar Nutritive Traits in Perennial Ryegrass
  • Evaluation of Saccharomyces cerevisiae Wine Yeast Competitive Fitness in Enologically Relevant Environments by Barcode Sequencing
  • Tripsazea, a Novel Trihybrid of Zea mays, Tripsacum dactyloides and Zea perennis
Show more Investigation
  • Top
  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • Literature Cited
  • Figures & Data
  • Supplemental
  • Info & Metrics

GSA

The Genetics Society of America (GSA), founded in 1931, is the professional membership organization for scientific researchers and educators in the field of genetics. Our members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level.

Online ISSN: 2160-1836

  • For Authors
  • For Reviewers
  • For Advertisers
  • Submit a Manuscript
  • Editorial Board
  • Press Releases

SPPA Logo

GET CONNECTED

RSS  Subscribe with RSS.

email  Subscribe via email. Sign up to receive alert notifications of new articles.

  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus

Copyright © 2019 by the Genetics Society of America

  • About G3
  • Terms of use
  • Permissions
  • Contact us
  • International access