Figure S4 The F element shows higher repeat density than the D euchromatic reference region irrespective of the repeat library used with RepeatMasker. In congruence with the results obtained using the combined repeat library, repeat density estimates using species-specific ReAS repeat libraries show that the F elements have a higher transposon density than the D elements in all four species. Unlike other de novo repeat algorithms, ReAS identifies repeats by finding k-mers that occur at a high frequency within genomic reads. Hence the quality of the ReAS library is less likely to be affected by misassemblies.