
Haplotag:
Software for Haplotype-Based Genotyping-by-Sequencing (GBS) Analysis

User Manual (2016-January-12)

Author: Nick Tinker (nick.tinker@agr.gc.ca)

Citing Haplotag: Tinker, N.A., W.A. Bekele, J. Hattori. 2016. Haplotag: software for haplotype-based
genotyping-by-sequencing analysis. G3: genes - genomes - genetics. (in press; please update on
publication)

What is Haplotag?

Haplotag is a software program to analyse data from genotyping-by-sequencing experiments in natural
and/or experimental populations of biological organisms. It was initially developed to solve specific
issues related to the discovery and analysis of genetic polymorphisms in oat: a self-pollinating
allohexaploid plant species with no reference genome. While this was the driver for development,
Haplotype may find use in other species and other genetic systems.

The absence of a reference genome requires that polymorphisms be discovered from sequence
alignments that may span multiple paralogous loci. To identify which polymorphisms are allelic
(belonging to a single diploid locus) one needs to test models of polymorphism assortment in genetic
populations. A model with two alleles that appear to be homozygous in most inbred lines would be
accepted, while a model that implied a large proportion of heterozygotes would be rejected.

Rather than test models based on single SNP loci, Haplotag takes advantage of the fact that short
sequence reads from genomic data will often contain multiple SNPs, and that these SNPs form
haplotypes that segregate as though they are multiallelic loci. Thus, Haplotag is able to test and fit
models with three or more haplotypes that effectively account for all of the SNPs within those
haplotypes. Some potential advantages of this include: the ability to discover multiallelic SNPs and high-
density SNPs that form complex alignments, the ability to directly quantify the frequency of each
multiallelic haplotype, and the ability to use haplotype data in genetic association analysis where it may
provide increased statistical power for the discovery of QTLs in phase with a specific haplotype. More
discussion of these features will be provided in accompanying publication (provide reference here when
published).

In addition to these advantages, Haplotag is designed to produce a highly visual and intuitive “passport
view” of each haplotype model that is identified. We believe that the visualization of haplotypes and
their assortment in genetic populations can provide useful insight into genetic systems. They are also
educational, as they can be used to illustrate the principles of GBS analysis and genetic segregation to
students and lay persons. These passports are produced in addition to standard genotype output for
every Haplotag analysis. Each passport is a simple HTML file that can be viewed in any web browser.
Passports are indexed to a master page that can be searched for a locus of interest. These static HTML
pages can be used locally or they can be uploaded to a website in order to provide access to a
community of collaborators.

File S1

To illustrate this, Figure 1 is a direct, un-modified screenshot of a Haplotag passport. It shows an initial
alignment of sequences from which models for two independent loci were selected.

Figure 1. Screenshot of an HTML passport produced by Haplotag in an oat GBS data set. At the top is
the initial tag alignment. Below this are models for two independent loci based on mutually exclusive
haplotypes from the initial alignment. Haplotypes are identified by “TagIDs” 570 through 574. The
lower table shows the literal segregation of these haplotypes in the first 20 taxa (scrolling down would

show a much larger set, in this case approximately 2600 taxa). Numbers in the cells are the actual
counts of each tag, which have been shaded to indicate haplotype presence and locus membership.

Hardware and software requirements:

The current implementation of Haplotag requires a 64-bit Windows operating system. It has been
tested on Windows 7, 8, and 10 as well as server versions. The amount of resources depend on the size
of project, the size of the genome, the number of taxa, etc. We have been able to perform moderately
large analyses on a PC with 8GB of RAM, 4 CPUs, and 200GB of hard disk space, while a project with
3000 taxa in hexaploid oat required 24GB of RAM. Most program steps can take advantage of multiple
processors, and speed will scale almost directly with the number of processors, thus a PC with 24
processors could accomplish some jobs 12 times faster than a PC with 2 CPUs. Since Haplotag reads
very large input files and writes a large number of small files as output, it will run very slowly when
reading and writing across network drives, and we highly recommend running it with all files on local
hard disks.

Haplotag is written in Free Pascal using the Lazarus IDE. Both are based on open source community
projects available for popular computer including Windows, Linux, and Mac-OS. However Haplotag has
so far been compiled and tested for the Windows environment, and users of other systems may need to
request the source code and make minor modifications suitable to other environments.

Haplotag does not depend on any other software to run, but it currently requires input files produced by
the UNEAK pipeline of the TASSEL software (http://www.maizegenetics.net/#!tassel/c17q9). Our reason
for this dependency is that UNEAK is very efficient at parsing raw FastQ files, and separating them into
tag count files for each taxa based on multiplex barcodes, and we saw no reason to try and duplicate
this function. Learning to use UNEAK may some investment of time, but it will also give you access to
an alternative SNP calling pipeline for cross validation of results. Haplotag should call most of the same
SNPs as UNEAK, as well as additional SNPs belonging to haplotypes with multiple SNPs and haplotypes
from paralogous series which UNEAK will discard. A short helper-tutorial on using UNEAK can be found
at the end of this manual.

Haplotag contains an experimental feature to call genotypes directly from raw FASTQ files when running
in production mode, given a predefined set of loci from previous projects. This mode is not currently
supported, but in future we hope to replace the functionality UNEAK within Haplotag routines.

“The easiest way to get started with Haplotag is to unpack the

distribution archive, then look for three demo directories named

according to the pipelines described in Table 4 and illustrated in

Figure 2. Each directory contains a fully functional Haplotag

script that works with a set of small annotated demo files.

http://www.maizegenetics.net/#!tassel/c17q9

Installing and Running Haplotag:

Haplotype is contained in a single file “Haplotag.exe” and no installation is required. You should only
download Haplotag from a reliable source, preferably directly from the author’s distribution site:

http://haplotag.aowc.ca/

Haplotag is executed from a single command followed by the name of an input file. E.g.:

C:\myhaplotagdirectory\haplotag HTinputfile.txt

The input parameter/script file (described below) provides all the information that Haplotag requires to
run, including parameter settings and pipeline steps. For those not familiar with using Windows
command line, there are four ways to do this:

Option 1) Just double click on “Haplotag.exe” but make sure it is in the same directory as the input
file, and the input file must be called “HTinput.txt”. For legacy reasons, the name “inputfile.txt”
will also work if the default name is not present.

Option 2) Open a command prompt from the Windows start menu and type the command.
Option 3) Write a batch file by typing this command into a text file and saving the file with the

extension “.bat”. Then click on the batch file to run the program. This option is useful if you
wish to walk away and leave your computer to perform multiple analyses (just type multiple
commands, one per line).

Option 4) Create a shortcut by right-clicking in a windows folder, selecting “new”, then “shortcut”.
Select “Haplotag.exe” as the target. You may need to follow a wizard to do this in windows 8,
then afterward (or directly) edit the properties of the shortcut to look like the form below
(directory names are suggestions).

Input Parameter/Script File (default name “HTinput.txt”)

The input parameter/script file is a special text file that tells Haplotag exactly what to do and what
parameters to use while doing it. You can write or edit this file using Windows Notepad1. We

1 As an alternative to Notepad, we recommend a free third party text editor called Notepad++. This editor is will
allow you to view and edit very large text files that Haplotag (and other genomics software) may produce.

recommend that you create and save a new input file for each of your projects. This will provide an
audit trail for use in your methods section when you publish your results.
The format of the input file is very simple, as shown below. Program parameters come first, and begin
with a special word preceded by the strudel (@) and followed by the parameter setting. After this
come the pipeline steps, each preceded by an exclamation mark (!) and followed (usually) by a single file
name. Any line that does not begin with “!” or “@” is ignored as a comment. The sample input files
distributed with Haplotag in the demo directory give more extensive examples with additional
comments.

Program parameters

Program parameters should be specified at the beginning of an input file. In some cases it may be
possible to change parameters in between pipeline steps, e.g. to change a default path, but this is not
recommended or necessary. Program parameters begin with the “@” symbol, and are followed by a
single setting. All valid program parameters are shown in Table 1. All parameters have a default value
that will be used if the parameter is not set by the user. Since we cannot guarantee the defaults will
remain the same for all versions, we highly recommend that you specify ALL parameters in your input
file. Parameters that are not relevant to certain pipeline steps will be ignored. You may use the defaults
shown below as guidance, but please consider that appropriate parameters for GBS analysis are highly
dependent on the organism, the technical methods, and the genetic system. Only you, the investigator,
can decide what is appropriate, and this may require trial and error.

Table 1. Description of all parameters that can be set in Haplotag input file.
Parameter name Description Values Default setting2

@PATH
Default location for input and output files,
such as “c:\mydata\haplotag\” (no
quotes). “.\” = current directory.

Legal, existing path
on your computer.

.\

@ProjectName
Short name for your project. This will
appear in your output files.

Any character string,
no spaces

Haplotag_project

@ClusterPrefix
Prefix for naming new clusters and loci in
discovery modes.

Any character string,
no spaces

HC

@MaxBaseDif

This specifies the maximum number of
nucleotide differences between two tags
before they are joined into the same
cluster.

 3

@Verbose
Causes Haplotag to report details of
model selection in an html file for each

true or false true

2 Do not take default settings for granted as they may change in future versions.

Program parameters:

@ProjectName MyProject

@RSite PstI-MspI

Pipeline steps:

!ReadTaxaIDFile HTtaxa.txt

!ClusterMergedAll MergedAll.txt

cluster. This will use more disk space and
run more slowly.

@ThreePlus

Writes an HTML index file where only the
models with >2 haplotypes at a locus are
reported. This makes a shorter index
(long indexes load slowly in a browser).

true or false false

@MaxThreads

Maximum number of threads (computer
cores) to use. Setting this to 999 will use
every core on your computer and could
slow things down a bit. Setting 99 will use
all cores except 1.

Any integer, or 99, or
999

99

@MinTagCount
Minimum tag count (across all taxa) for
including a tag in a model.

Any integer 10

@MinPres
Minimum frequency of taxa with a given
haplotype for that haplotype to be
included in a locus model.

Any decimal between
0 and 1

0.002

@MaxPres
Maximum frequency of taxa with a given
haplotype for that haplotype to be
included in a locus model.

Any decimal between
0 and 1

0.998

@MaxQ
Maximum number of unique haplotypes
(will stop reading a file if this is reached).

Any integer 300000000

@MaxS
Maximum number of tag clusters to
consider when building clusters.

Any integer 100000000

@MaxTagsToTest

Maximum number of tags in a cluster
alignment. Alignments with more tags
than this will be discarded. Since
Haplotag tests every possible combination
of tags, numbers larger than 9 may run
slowly. Only relevant in discovery modes.

Any integer 9

@RSite

The restriction enzyme(s) used to make
the GBS complexity reduction. Only
relevant when reading raw FastQ files.
Other combinations may be added later.

PstI-MspI
ApeKI

PstI-MspI

@ThreshGeno

The minimum frequency of complete
genotypes (relative to the full taxa list) for
a model to be selected. Only relevant in
discovery modes.

Any decimal between
0 and 1

0.50

@ThreshHet

The maximum overall heterozygote
frequency (heterozygotes/genotypes)
tolerated in a haplotype model. Only
relevant in discovery modes.

Any decimal between
0 and 1

0.10

@ThreshMAHet

The maximum heterozygote frequency
tolerated, relative to a single haplotype.
This eliminates rare haplotypes that
participate in too many heterozygotes.
This parameter is not useful in a bi-
parental population and can be set to 1.
Only relevant in discovery modes.

Any decimal between
0 and 1

0.25

@ThreshTrihet
The maximum frequency of genotypes
that contain three haplotypes. Only
relevant in discovery modes.

Any decimal between
0 and 1

0

@ThreshMultiHet The maximum frequency of genotypes Any decimal between 0

that contain four or more haplotypes.
Only relevant in discovery modes.

0 and 1

@SkipBC1

This is used only when reading raw FastQ
files. It determines whether the first
barcode base is ignored when assigning
sequence reads to taxa. Because the first
sequenced base is often N, this may find
additional sequences. Please check that all
barcodes are unique after the first base.

true or false false

@HetRatio

Specifies a threshold ratio of tag count for
a minor allele, below which the allele will
be dropped. For example if A:B = 1:19 and
the HetRatio is 0.06 then the A haplotype
will be counted as absent because its ratio
is 0.5. When a non-zero tag is counted as
absent, it is shown in grey in the passport.

0 and 1 zero

Pipeline steps

The next section of the input file describes the actual pipeline steps that Haplotag will perform. These
commands begin with “!”, and are described in Table 2. Various commands from this table can be
combined into a set of standard pipeline scripts, as illustrated in Figure 2, Table 4, and described later
under the section “Standard Pipelines”. In most cases the command is followed by either a single file
name or, if multiple files are required, by a single directory path. You should generally use the default
filenames shown, but you may choose to use alternate file names if you have renamed output from
previous steps. You may also enter a path as part of these filenames. When Haplotag detects that a
filename already contains a path (indicated by the slash “\”) then it will not add your default path to the
filename. Otherwise it always adds the default path. This is useful if you want to read data from a
different directory. This feature is demonstrated in the sample input files.

Figure 1. Flow chart showing input files (green), output files (blue) and dependencies
(connecting lines) associated with ‘Haplotag’ GBS discovery software. Default file names are
shown in yellow, and are normally appended by “.txt” in the Windows file system. Three
alternative pipelines (A, B, and C) are available, with required input labeled for each. The cluster
discovery pipeline (A) and the haplotype discovery pipeline (B) start by clustering a complete
inventory of tags (A) or a reduced inventory of tags from prior work (B) to produce clusters. In
(B), the complete inventory is then aligned against this template to increase the sampling of
new haplotypes. A complete tag-by-taxa matrix of tag counts (HTBT) is then formed for all tags
belonging to clusters of two or more tags. Other output files are then created based on
haplotype model fitting. In the production pipeline, only the files labelled by (C) are required,
since genotyping is based on counting copies of haplotype-tags in the output files from previous
discovery work.

Table 2. Description of pipeline commands that can be combined into a Haplotag script. See Table 4
for standard pipelines that use these commands in a meaningful sequence of steps. Where indicated,
procedures are multithreaded to speed up execution.

Command
Files/data required
(see Table 3)

Files/data produced
(see Table 3) Comments

!ReadTaxaIDFile HTTaxa.txt (none) Causes Haplotag to read a list of taxa,
including short identifiers, longer entry
names, and project membership. This taxa
file is required by all Haplotag procedures,
and should be read as the first step in every
pipeline.

!ReadTaxaKey HTKey.txt (none) Causes Haplotag to read a list of taxa with
accompanying barcodes and raw data file
names. This is only required when reading
raw data for a production run.

!ClusterMergedAll

(multithreaded)

MergedAll.txt HTClusters.txt
HTHaplos.txt
HTClusterinfo.txt
HTSingletons.txt

Causes Haplotag to read a file containing
global tag counts from a project. The
MergedAll file is produced by the UNEAK
pipeline. After reading the file, Haplotag
tries to combine the tags into clusters based
on current parameters. Tags that remain as
singletons will be written to a separate file
that is not normally used. Members of each
cluster are written to “HTHaplos”.

!ClusterGBSLoci

(multithreaded)

GBSLoci.txt HTClusters.txt
HTClusterinfo.txt
HTMembers.txt

Causes Haplotag to read a file containing
consensus sequences from pre-selected
(legacy) loci. After reading the file,
Haplotag tries to combine the consensus
tags into new clusters based on current
parameters. Unlike “ClusterMergedAll”,
tags that remain as singletons will be kept in
the cluster file because these may match
multiple haplotypes in the next step.

!ReadMergedTags

(multithreaded)

MergedAll.txt HTHaplos.txt This procedure is designed to read a global
tag count file, but it is only used when
Haplotag has created clusters from
predefined “legacy” loci (i.e. following
ClusterGBSLoci). Haplotag then matches
the tags to the cluster consensus
sequences. All tags that can be matched
are written to the file “HTHaplos.txt” for use
in later steps.

!ReadClusters HTClusters.txt (none) This step reads a set of cluster consensus
sequences written in a previous step.
Although clusters may remain in memory,
this procedure needs to be executed in
order to re-index the clusters and
coordinate them with the haplotypes.

!ReadCMembers HTMembers.txt (none) This step is optional. The file HTMembers is
created when ClusterGBSLoci is run. Its
purpose is to identify the names of legacy
loci that may have been aligned into
clusters, so they can be identified
downstream in the new locus
nomenclature.

!ReadHaplotypes HTHaplos.txt (none) This step reads a set of haplotypes that
have been indexed to a set of tag clusters.

This file should be read immediately after
reading HTClusters so that the haplotypes
are properly indexed in memory.
Important: HTClusters and HTHaplos are
indexed together and cannot be mixed or
matched between projects.

!MakeTagByTaxa

(multithreaded)

Path to directory of
tag count files

HTBT.txt This step requires that HTHaplos have been
previously read. It will then search for
these haplotypes in a set of tag count files,
one per taxon, that have been produced by
the UNEAK pipeline. As it does so, it builds
a large matrix of tag counts for each
combination of taxon (columns) and tags
(rows).

!ReadFastQ

(will soon be
multithreaded)

Path to directory of
raw data files

HTBT.txt This step does the same thing as
MakeTagByTaxa, except that it parses reads
for each taxa directly from raw FastQ files.
This is intended to accelerate and simplify
the calling of haplotypes from predefined
models because the UNEAK pipeline is no
longer required. In theory this step could
be used in a discovery pipeline, but there is
little point since UNEAK is still required to
make a global tag count file from which to
build clusters and/or efficiently identify
haplotypes.

!ReadTBT HTBT.txt This reads a tag-by-taxa (TBT) file. It is not
required if the TBT data are already in
memory from a previous step (either
MakeTagByTaxa or ReadFastQ). You may
read the TBT file to re-start a previous
analysis. E.g. to run model discovery
(IdentifyAlleles) with different parameters.
It is absolutely essential that the TBT file
matches HTClusters, HTHaplos and the
HTTaxa from which it was built: do not
change these files and do not mix projects

!IdentifyAlleles All required input
needs to be in
memory at this
point.

HTLoci.txt
HTAlleles.txt
HTSNPs
HTGenos
HTSNPGenos
HTindex.htm
+ HTML passports

This is the final step in all pipelines. It
behaves differently depending on whether
the pipeline is in production mode or
discovery mode. These differences are
elaborated under “Discovery vs. Production
modes” in the text. The primary result of
this procedure is a set of genotype scores in
either haplotype (HTGenos) or SNP
(HTSNPGenos) format. This is also when the
HTML passports are written. In discovery
modes, new models are tested and selected
and the files HTLoci and HTAlleles are
written, while in production mode these
files are used to define fixed models.

Discovery vs. Production Modes

Whether Haplotag runs in discovery mode vs production mode is determined by which files have been
read at the time when !IdentifyAlleles is executed. If HTClusters and HTHaplos have been read, then it
runs in a discovery mode. If HTLoci and HTAlleles have been read then it runs in production mode.

In discovery mode, Haplotag will start from a set of haplotypes that are assigned to clusters. For each
cluster it will try to fit one or more loci that meets threshold filtering parameters. The best locus, which
meets all filtering thresholds and fits the largest number of genotypes, will be selected first. Haplotypes
that do not belong to that model may be assigned to subsequent models that also meet thresholds. In
hexaploid oat, we often observe two good locus models from one cluster, sometimes three, and
occasionally more. Each model will be given a locus identifier based on the cluster name. Haplotype-
and SNP-based genotypes will be scored for each taxon based on presence (1 or more tags) or absence
(no tags) of haplotypes from a given locus. The locus models, and genotypes for those models, will be
reported in passport files, one passport per cluster. Locus models are combined by cluster because they
most likely originate from duplicated genomic regions, which will be of interest to most genomic
investigators. The cluster-based passport provides an intuitive way to visualize which bases are
diagnostic among loci, and even which haplotype is ancestral. Also, by co-visualizing locus models built
from the same cluster, aberrant behaviour requiring parameter optimization may be observed.

Discovery mode should be run across a large and diverse set of taxa, ideally containing a mix of progeny
from diversity studies and from bi-parental populations. Diversity studies allow sampling of a large
number of haplotypes, while bi-parental populations allow better validation that haplotypes are allelic.
For example, segregation of haplotypes A vs B in one population and B vs C in another provides strong
evidence that the locus model with three haplotypes is correct. Most taxa should be nearly homozygous
so that a heterozygote frequency of approximately 10 or less can be applied to exclude spurious models
that contain non-allelic haplotypes. However, if the majority of taxa are inbred, then it is possible to
include sub-studies with heterozygous individuals. We are currently experimenting with the use of taxa
belonging to different species and this may be reported in a future manuscript.

In production mode, it is assumed that you have tested and examined a good set of models in a diverse
population where most haplotypes have already been incorporated into a model of Haplotag loci.
Haplotag will then look for these exact same haplotypes in a new set of data, presumably from new taxa
where genotypes are unknown. The demo files for production mode contain the same progeny as those
for discovery modes only for validation purposes. An obvious criticism of production mode is that new
haplotypes that were not seen previously in discovery mode will not be scored, and the data will appear
as missing. Likewise, entirely new loci will also be ignored. The same criticism would be valid for any
array-based SNP assay, which also detects only validated alleles at discovered loci. This is why it is
critical to build models across diverse germplasm before using production mode. The primary
advantage of production mode is that it allows fast and simple scoring of multiple new projects with an
inter-compatible nomenclature. This may be important in collaborative studies that depend on an
integrated genotype database. Another advantage of production mode is that it can be used with
heterozygous progeny. In future we may develop routines that would allow the addition of new
haplotypes and new locus models into an existing nomenclature.

Data files and output files

Depending on what pipeline functions are used, Haplotag will require or produce various input/output
data. All types of data files are described in the reference table below, with detailed formatting
requirements shown in the accompanying demo files. Those that are categorized as “input data” are
used only for input (e.g. raw data or partially analysed data from other software), “output files” are
produced by Haplotag, and those categorized as “output/input” are written by Haplotag for use in other
Haplotag procedures. All files belonging to Haplotag (i.e. files other than those produced from other
programs) have a header where the first two lines identify the type of file (e.g.
“!Haplotag_FileType_HTKey”) and the file version (e.g. !Haplotag_File_Version_3). These headers must
be exactly as specified because Haplotag uses these in error checking. If changes are made to Haplotag
that require a new file format, this will be indicated by a new file version. After the file type and file
version, the header may contain an indefinite number of comments. The end of the comments and
beginning of the data are signalled by a line containing only the text “!begin”. After this, the format
shown in the examples must be followed accurately. Unless specified otherwise, all terms (fields) must
be separated by the TAB character.

Table 3. Description of all data files required by and/or produced by Haplotag. Simulated examples of
each file (under the default filenames) are distributed with Haplotag. Detailed formatting requirements
are provided in these examples.

Default Filename
(refer to demo files)

Input, Output,
or Both Description

HTTaxa.txt Input This file contains a list of taxa (lines or accessions), one taxon per
line. For each taxon, there is a short taxon ID (text or numeric)
followed by a longer name, separated by a tab. Optionally, these
may be followed by a third column that identifies a project name for
each taxon. The order in which these taxa are listed will be the
same order that they will appear in all output reports. In older
versions, the first line of data gave the path to Tag count files; this is
now optional and ignored.

HTKey.txt Input This file is currently required only for the production pipeline that
reads raw FastQ files. It specifies, for each taxon, the raw data file
and the unique barcode that is required to deconvolute the short
reads. The raw data file is identified by the first two fields (Flowcell
and Lane) which will be combined by Haplotag to form a file name in
the format “Flowcell_lane_fastq.txt.gz”. The last two fields identify
the barcode, followed by the short taxa identifier. Taxa identifiers
must match those in the HTTaxa file. If they are not present in
HTTaxa they will be ignored and dropped from analysis.

Mergedall.txt Input This file is produced from the UNEAK pipeline (see Short tutorial on
running UNEAK). It contains a list of all tags meeting a minimum
presence threshold (default 10) across an entire project. Each tag is
reported only once, followed by its length and a frequency count.
This compresses a ginormous amount of information from the
extremely large raw sequence files, and discards all tags that occur
at very low frequency. By default, the MergedAll file from UNEAK is
in a binary format that only UNEAK can read, but it can easily be
extracted to a text file following instructions in the UNEAK tutorial.

Merged Tag counts
(multiple files, see
directory ‘tagcounts’

Input As above, this is a set of files produced by UNEAK. They are identical
to the MergedAll file except that there is one for each taxa. They
also need to be decoded from binary, and since UNEAK gives them

unpredictably cryptic names, they must also be renamed to a short
file name that matches the IDs in your taxa file. The renaming and
decompression can be done by writing a batch file as discussed in
the UNEAK tutorial.

Raw compressed
FastQ file(s)

Input FastQ files are the default data format for most short-read
sequencers. These files will most likely be compressed into “gz”
format. If not, you need to compress them using a gzip utility. The
free software 7-Ziip can produce this format. Support for “zip”
compression and uncompressed fastQ files in Haplotag may be
added at a future date. The raw data files must be named with the
format “Flowcell_lane_fastq.txt.gz”, where Flowcell and Lane are
identified in the HTKey file (this is an identical requirement in
UNEAK).

GBSLoci.txt Input This input file format is provided for those who need to condense a
set of previously identified GBS SNPs with reference sequences.
Each tab-delimited record contains a reference name followed by a
64-base reference sequence followed by SNP alleles (A/C format)
followed by the sequence length followed by the SNP position. The
file does not contain a header, but may begin with comments that
start with “#”.

HTClusters.txt Output/Input This file is produced by either of the two clustering procedures
(ClusterMergedAll or ClusterGBSLoci) and then it becomes the input
for further pipeline steps. It has a header followed by a simple tab-
delimited record format containing sequential cluster identifier,
cluster name, reference sequence.

HTMembers.txt Output/Input This file is produced by the procedure ClusterGBSLoci. It lists all
legacy loci that have been aligned into clusters. It can be read by
later steps so that these legacy loci are incorporated into a new
nomenclature.

HTHaplos.txt Output/Input HTHaplos is produced directly by ClusterMergedAll, or else it is
produced by ReadMergedTags when the tags from MergedAll are
aligned to the clusters from ClusterGBSLoci. HTHaplos defines all
the unique tags that belong to each cluster, and which will be used
to discover the haplotype models for that cluster.

HTClusterinfo.txt Output/Input This file is produced by the clustering procedures. It contains
clusters and number of members before dropping clusters with
more than @MaxTagsToTest, and renumbering clusters. It is not
currently used in further analyses.

HTSingletons.txt Output This file is written to list the singletons from the ClusterMergedAll
procedure. These singletons are not currently used in further
Haplotag analysis.

HTBT.txt Output/Input The HTBT is a complete matrix of tag (haplotype) counts for all tags
in the HTHaplos file (rows) by all taxa from the HTTaxa file
(columns). The file contains a header, followed by two lines showing
the number of tags and number of taxa. A tab delimited matrix (tags
x taxa) follows. This file may be too large to open in a text editor, but
there should be no need to edit it.

HTLoci.txt Output/Input This file contains a record of details for each locus defined by a
selected haplotype model. It contains numerous details related to
the model in which it was selected. It is written by IdentifyAlleles
when running in discovery mode. This file is used as input for the
production pipeline such that loci in different projects can have

consistent naming conventions.

HTAlleles.txt Output/Input This file contains a record of details for each haplotype, indexed to a
locus in the HTLocus file. It contains numerous details related to the
model in which it was selected. It is written by IdentifyAlleles when
running in discovery mode. This file is used as input for the
production pipeline such that loci in different projects can have
consistent naming conventions.

HTSNPs.txt Output This file is similar to HTHaplos except each record is for an individual
SNP that is referenced to a specific position in the consensus
sequence of a locus model.

HTGenos.txt Output This file contains the complete set of genotype scores for the
population that was analysed. Genotypes are written in a haplotype
format defined by the single-letter haplotype codes assigned in the
HTHaplos file. In production mode, genotypes may be completely
missing from some loci, so these are not written even though they
may appear in the Passport files.

HTSNPGenos.txt Output This file is similar to HTGenos file except that each record is for the
genotypes of an individual SNP that is referenced to the HTSNPs file.

HTindex.html Output This is a single HTML file that can be opened in any web browser,
probably by just clicking on it. This provides a searchable index of all
clusters for which there is at least one selected locus model. The
links within HTindex.html go directly to the corresponding passport
for that cluster. For a very large project the HTindex may load
slowly. For this reason we recommend using the option
“@ThreePlus true”. This will index only the clusters where a locus
has more than two haplotypes, which are the most interesting to
look at. Other clusters are still written to passports so you can find
them by typing their name in the browser address bar.

HTPassports
(multiple files)

Output Each cluster with at least one validated locus model will have an
HTML passport. The passports follow the format shown in Figure 1.
The first alignment always shows the complete cluster and its
consensus. After that there will be alignments and consensus
sequences for each selected model. After that there will be a table
of haplotype counts, arranged and coloured by the locus model to
which they belong. In discovery mode, haplotypes that do not fit a
locus model are shown last and coloured grey. The passports are all
written inside a subdirectory within your primary output directory.
We do not recommend browsing this directory if your project has a
large number of clusters; instead you can use the HTindex file
(above) to locate a cluster of interest.

Standard Haplotag Pipelines

Haplotag was designed to work from three different starting points, as illustrated in Figure 2, all
resulting in the same type of output. Our reasons for splitting these pipelines into component steps
were (1) to modularize the pipelines, clarify how they work, show which steps are shared, and allow
potential modifications to be made, and (2) so that a failed pipeline might be re-started midway through
an analysis, or later steps (e.g. model fitting with different parameters) could be re-tested more
efficiently from intermediate files.

The easiest way to get started with Haplotag is to unpack the distribution archive, then look for three
demo directories named according to the pipelines described in Table 4 and illustrated in Figure 2. Each
directory contains a fully functional Haplotag script that works with a set of small annotated demo files.
The script will analyse a simulated GBS project using only the data files contained in that directory.
These data files are deliberately small and idealized so that the pipeline will run quickly and produce
informative output. Each demo directory will also contain a batch file to start the program. If you
maintain the directory unpacked from the zip file on a Windows machine, these batch files called
“run_demo.bat” can be double-clicked to run the included demo (although you should never click on
files like this until you inspect what they are about to do, even if you trust the author ;-). After running,
the output should appear in a new subdirectory called “output”. There will already be a subdirectory
directory called “expected_output”. The contents of these two directories should be identical, unless
you experiment with the input files to see what happens (highly recommended).

Table 4. Standard Haplotag pipelines. See Figure 2 for illustration. See also the demo files which are
designed to work with the sample data files provided with Haplotag.
ID
Fig. 2

Sample input
directory Description of application

Pipeline Steps
(Table 2)

Input required
(Table 3)

Disc1 Demo_Discover
_from_UNEAK

Discover, test, and report GBS haplotype
models and genotypes starting with
merged tag counts from UNEAK pipeline.

!ReadTaxaIDFile
!ClusterMergedAll
!ReadClusters
!ReadHaplotypes
!MakeTagByTaxa
!IdentifyAlleles

HTTaxa.txt
MergedAll.txt

+ tag counts
from UNEAK

Disc2 Demo_Discover
_from_GBSLoci

Discover, test, and report GBS haplotype
models and genotypes starting with
reference tags from previous GBS
analyses, preserving legacy nomenclature.
It should also be possible to use predicted
fragments from a reference genome as
source tags in GBSLoci.txt.3

!ReadTaxaIDFile
!ClusterGBSLoci
!ReadClusters
!ReadCMembers
!ReadMergedTags
!ReadHaplotypes
!MakeTagByTaxa
!IdentifyAlleles

HTTaxa.txt
GBSLoci.txt
MergedAll.txt

+ tag counts
from UNEAK

Prod1 Demo_Producti
on_From_UNEA
K

Analyse and report previously discovered
GBS haplotype models based on new data
and new taxa, where tag counts for each
taxon have been made using UNEAK.
Models are defined by HTLoci and
HTAlleles produced from a discovery run.

!ReadTaxaIDFile
!ReadLoci
!ReadAlleles
!MakeTagByTaxa
!IdentifyAlleles

HTTaxa.txt

HTLoci.txt
HTAlleles.txt

+ tag counts
from UNEAK

Prod2 Demo_Producti
on_from_FASTQ

Analyse and report previously discovered
GBS haplotype models based on new data
and new taxa, where sequences are read
directly from compressed FastQ files.

!ReadTaxaIDFile
!ReadTaxaKey
!ReadLoci
!ReadAlleles

HTTaxa.txt
HTKey.txt
HTLoci.txt
HTAlleles.txt

3 We have not tested this, but it may be possible to compile a set of predicted reference tags from a reference

genome into the file ‘GBSLoci.txt”, such that Haplotag will build similarity clusters with preserved reference names
(written to HTMembers). Haplotag would then build locus models from within these clusters based on the
matched haplotypes, thus validating and cross-referencing sets of paralogous loci.

Models are defined by HTLoci and
HTAlleles produced from a discovery run.

!ReadFastQ
!IdentifyAlleles

Raw FastQ files

Short tutorial on running UNEAK.

When we developed Haplotag we were already using UNEAK, which is an excellent GBS pipeline that
produces robust GBS data. We recognized that UNEAK was very efficient at reducing raw data files to
lists of tags with counts of their occurrence, and that this was a prerequisite for any further analysis.
We chose not to duplicate this functionality, although we plan to address this in future because UNEAK
is no longer being developed and may never handle longer sequence reads. Currently, to use Haplotag
in any mode you will need to run the first steps of UNEAK to produce global tag counts (Mergedall.txt)
and to produce a separate tag count file for each taxon that you wish to analyse in Haplotag.

The UNEAK pipeline is part of the TASSEL-3 distribution and is not available in other TASSEL versions.
Please locate TASSEL-3 and the UNEAK user manual which are now located in the TASSEL “archived”
directory: http://www.maizegenetics.net/#!tassel/. The purpose of this section is to provide a few
additional pointers on using UNEAK to supplement the manual. Examples and scripts here are provided
for the Windows environment, since this environment is less well supported in the TASSEL manual.

Unless you are handling a relatively small data set, you will likely need to install a JAVA 64-bit
environment. The default JAVA environment is 32-bit even on a 64-bit machine. You may install both
JAVA environments on one machine.

The next thing to check after downloading and installing TASSEL is to prepare a master-script that will be
called from your UNEAK project folder. It is best to keep this in the TASSEL install directory and point to
it from a separate batch file within your project directory. Windows will use a file such as
“run_pipeline.bat” while Linux will use the PERL script (run_pipeline.pl).

We recommend that you make a copy of the run_pipeline.bat file and name it something like
“run_pipeline_HiMem.bat”. Then edit the file as shown below (comments are followed by double
colons):

@echo off

:: change TOP= to the location where TASSEL is installed:

set TOP=C:\TASSEL3

set LIB_JARS=%TOP%\lib

set CP=%TOP%\sTASSEL.jar

for %%i in (%LIB_JARS%*.jar) do call "%TOP%\cp.bat" %%i

echo %CP%

:: in the statement below, 20G and 40G are the starting and maximum memory sizes in GB

:: Make sure that –Xmx is set to a size that can safely run on your computer

java -classpath "%CP%" -Xms20G -Xmx40G net.maizegenetics.pipeline.TasselPipeline %*

You should set up a separate directory for each project where you will use UNEAK. For example, you if
you have a data directory on drive D this could be “D:\data\GBS\UNEAK\myproject1”. Inside this
directory you should prepare a text file with a .bat extension. The example below has comments for
explanation, and is designed to pause after creating a directory hierarchy so that you can put the correct
input files into the new subdirectories that it will create.

:: set the next line to point to your master TASSEL batch file:

SET PROG=C:\TASSEL3\run_pipeline_himem.bat

:: The next line sets the default directory from which you run this batch program

SET DIR=%~dp0

:: The next line will create the required UNEAK directory structure for you:

call %PROG% -fork1 -UCreatWorkingDirPlugin -w %DIR% -endPlugin -runfork1

http://www.maizegenetics.net/#!tassel/

echo The program will now pause while you put correct input files into the new directories

echo - put your key file into the “key” directory

echo - put your raw sequence files into the “illumina” directory

pause

:: Make sure to edit the TASSEL parameters below such that they are appropriate for your work:

call %PROG% -fork1 -UFastqToTagCountPlugin -w %DIR% -e PstI-MspI -endPlugin -runfork1

call %PROG% -fork1 -UMergeTaxaTagCountPlugin -w %DIR% -m 250000000 -c 50 -endPlugin -runfork1

:: The next line will make a text version of mergedall

call %PROG% -fork1 -BinaryToTextPlugin -i %DIR%\mergedTagCounts\mergedAll.cnt^

 -o %DIR%\mergedTagCounts\mergedAll.txt -t TagCounts -endPlugin -runfork1

:: The remaining UNEAK pipeline can be run for comparison

:: or you can stop here and run Haplotag.

After running UNEAK, you will need to convert the tag count files from binary format (extension “.cnt”)
to text format (extension “.txt”). The Mergedall file is converted in the above script, but you will need to
mess around a bit to convert all the individual taxa count files that are found within the TagCounts
directory. An example is below:

:: Batch file for conversion of binary UNEAK files to text

:: This is a comment line

:: First I like to set a variable that points to the directory where TASSEL is stored

SET PROG=S:\TASSEL\TASSEL3\run_pipeline_HiMem.bat

:: To convert tag count file for each taxa:

call %PROG% -fork1 -BinaryToTextPlugin -i T1587.cnt -o T1587.txt -t TagCounts -endPlugin -runfork1

call %PROG% -fork1 -BinaryToTextPlugin -i T1588.cnt -o T1588.txt -t TagCounts -endPlugin -runfork1

call %PROG% -fork1 -BinaryToTextPlugin -i T1589.cnt -o T1589.txt -t TagCounts -endPlugin -runfork1

If taxa.cnt files are numbered sequentially with a consistent pattern of filenames it is possible to write a
batch file (or a script if you are running Linux) that will loop through these names automatically. An
example of this is below.

:: script to convert 1248 TEXT COUNT files named sequentially

SET PROG=S:\NICK_SHARED\bin\TASSEL\TASSEL3\run_pipeline_himem.bat
SET start=1
SET last=1248

set /a i=%start%

:LOOP_BEGIN
IF %i% GTR %last% GOTO END
echo This is iteration %i%.
SET TAX=P%i%
call %PROG% -fork1 -BinaryToTextPlugin -i .\tagcounts_a\%TAX%_merged.cnt -o
.\txtcounts\%TAX%.txt -t TagCounts -endPlugin -runfork1
SET /a i=%i%+1
GOTO LOOP_BEGIN
:END

pause

Updates and bug fixes: (by date of released version)

 2016-January-10
o Added a feature to specify a threshold for allele ratio when calling haplotypes.

This is controlled in the input file using @HetRatio followed by a decimal
between zero and 1, which specifies a threshold ratio of tag count for minor
allele, below which the allele will be dropped.

 2015-April-30
o Corrected MinTagCount threshold to keep >= this number of tags from

MergedAll (previously it used only greater than).
o Added space between TagID and Count in passport files so these numbers won’t

run together. Also made a footnote that Count means number of taxa with a
given haplotype.

 2015-April-07
o Fixed bug in ClusterMergedAll that crashed with a small number of tags and a

large number of processors.

 2015-April-08
o Extended the haplotype character naming convention to simulate multi-allele

data for use in TASSEL, following convention given here:
https://bitbucket.org/tasseladmin/tassel-5-
source/wiki/UserManual/Load/DataFAQ

o A SNP nomenclature file (HTSNPs.txt) and a SNP genotype file (HTSNPGenos) are
now created alongside of the haplotype-based output, for those preferring to
perform SNP-based genotype analysis.

ToDo: (Planned fixes, short-term)

 Add reporting of legacy SNP names to the SNP nomenclature file (applies only to
discovery mode from a GBSLoci file) where previous SNP names may exist.

 Add additional columns to verbose model selection reports to give allele frequencies
etc. (it is not always clear why a model is rejected)

 Double check and document mintagcount meaning. Note that currently it affects both
clustering from mergedall as well as clusters from GBSloci (so setting >1 eliminates
everything loci from GBSloci). It should only affect Mergedall. Change examples to 10 so
that people set these higher by default!

 Fix CbyT to read and report sequences – especially so that it works to update GBSLoci
nomenclature file.

 When reading tag count files in the “!MakeTagByTaxa” step, if a taxa file is listed in the HTTaxa
input list but the file is not found, the thread that is reading that taxa file will stall with no error
message, or if there is an error message it will be lost in the long string of progress reports.
Then the program will stop, and the user will not know why. There needs to be an alert and
graceful exit. Better still, there should be a preprocessing step to check for the presence of all
files before this step is executed.

 There is a bug in hapltag discovery mode. When GBSLoci are clustered, if no clusters are formed
(i.e. every tag is unique), the program will crash.

https://bitbucket.org/tasseladmin/tassel-5-source/wiki/UserManual/Load/DataFAQ
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/UserManual/Load/DataFAQ

Warnings, known issues, and limitations

 Haplotag numbers SNP positions starting with 1 because this is more intuitive for most
biologists. However other pipelines (e.g. TASSEL and UNEAK) identify positions starting with
zero (so the last base in a 64-base tag will be 63). This is because most computer languages
work this way. Please be careful when cross-referencing output from Haplotag and other
pipelines.

 You cannot use spaces in file names or file paths. Microsoft should never have allowed this in
the first place. If you have your data files in a location such as “c:\users\me\my documents\”
then we suggest you move your data to a new directory such as “d:\data\Haplotag\project1”.

 Haplotag does not perform checks of available RAM. It works with dynamic arrays and it is
difficult to predict in advance how large these arrays will grow. If you are working with very
large files and limited RAM, it is a good idea to watch your physical RAM usage in Task manager.
The program (and your computer) will run very slowly if your RAM fills up to near maximum.

 Haplotag currently works only with 64 base sequences (usually trimmed from 100-base single-
end reads) because it is designed to be inter-compatible with the UNEAK pipeline which has the
same limitation. We may extend this capability in future.

 The feature to read raw compressed FASTQ files will only work with Illumina-type output with
fixed-length reads equal to or greater than 100 bases. Haplotag will not read Ion Proton files
because these have variable length reads that are often shorter than 64 bases. If there is
demand, we may produce a utility to convert these files, padding the lengths to 100 bases.

 The feature to read FASTQ files is only designed to work in production mode with a set of
predefined haplotypes. Currently, the discovery mode requires that raw reads be first
processed into tag counts using the UNEAK pipeline. The UNEAK/TASSEL algorithms are very
efficient at this step, so we may or may not replicate this feature in future.

