The rate and effects of spontaneous mutation on fitness traits in the social amoeba, *Dictyostelium discoideum*

David W. Hall*, Sara Fox§, Joan E. Strassmann†, and David C. Queller†.

* Department of Genetics, University of Georgia
§ Department of Ecology and Evolutionary Biology, Rice University
† Department of Biology, Washington University in St. Louis

DOI: 10.1534/g3.113.005934
Figure S1 Distributions of ancestors and MA lines for eight putative fitness components.
Term | **Estimate** | **Std Err** | **t Ratio** | **Prob>|t|**
---|---|---|---|---
Intercept | 0.453 | 0.115 | 3.95 | 0.0002*
Relative total # of fruiting bodies | 0.440 | 0.119 | 3.70 | 0.0004*
(Relative total # of fruiting bodies - 0.96858)^2 | -1.546 | 1.003 | -1.54 | 0.1270
(Relative total # of fruiting bodies - 0.96858)^3 | -6.579 | 3.220 | -2.04 | 0.0441*

Figure S2A Cubic regression of spore number on number of fruiting bodies. Significant cubic term indicates non-linearity and is consistent with stabilizing selection on number of fruiting bodies.

Term | **Estimate** | **Std Err** | **t Ratio** | **Prob>|t|**
---|---|---|---|---
Intercept | 0.527 | 0.059 | 9.00 | <.0001*
Relative # spores per fruiting body | 0.393 | 0.062 | 6.34 | <.0001*
(Relative # spores per fruiting body - 0.91935)^2 | -0.728 | 0.238 | -3.06 | 0.0030*
(Relative # spores per fruiting body - 0.91935)^3 | 0.205 | 0.494 | 0.41 | 0.6797

Figure S2B Cubic regression of relative total spore number on spores per fruiting body. Significant quadratic term indicates non-linearity and is consistent with stabilizing selection on relative number of spores per fruiting body.