Table S1 Sequencing Summary

<table>
<thead>
<tr>
<th></th>
<th>Lanes</th>
<th>Aligned Reads</th>
<th>Coverage</th>
<th>Average Depth</th>
<th>SNPs</th>
<th>Indels</th>
<th>Total SNPs/Indels</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canton S</td>
<td>2</td>
<td>9,566,323</td>
<td>99%</td>
<td>17.1x</td>
<td>79,045</td>
<td>14,483</td>
<td>93,528</td>
<td>100%</td>
</tr>
<tr>
<td>w^{1118}</td>
<td>2</td>
<td>10,724,804</td>
<td>99%</td>
<td>19.1x</td>
<td>79,045</td>
<td>14,483</td>
<td>93,528</td>
<td>100%</td>
</tr>
<tr>
<td>Progeny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>1</td>
<td>2,870,313</td>
<td>95%</td>
<td>5.1x</td>
<td>66,350</td>
<td>2,366</td>
<td>68,716</td>
<td>73%</td>
</tr>
<tr>
<td>1b</td>
<td>1</td>
<td>2,352,362</td>
<td>92%</td>
<td>4.3x</td>
<td>63,848</td>
<td>1,532</td>
<td>65,380</td>
<td>70%</td>
</tr>
<tr>
<td>1c</td>
<td>1</td>
<td>2,166,375</td>
<td>94%</td>
<td>3.9x</td>
<td>64,695</td>
<td>1,843</td>
<td>66,538</td>
<td>71%</td>
</tr>
<tr>
<td>1d</td>
<td>1</td>
<td>2,446,926</td>
<td>92%</td>
<td>4.4x</td>
<td>62,273</td>
<td>1,886</td>
<td>64,159</td>
<td>69%</td>
</tr>
<tr>
<td>1e</td>
<td>1</td>
<td>2,703,932</td>
<td>92%</td>
<td>4.8x</td>
<td>62,203</td>
<td>2,047</td>
<td>64,250</td>
<td>69%</td>
</tr>
<tr>
<td>1f</td>
<td>1</td>
<td>2,568,717</td>
<td>93%</td>
<td>4.6x</td>
<td>63,715</td>
<td>1,982</td>
<td>65,697</td>
<td>70%</td>
</tr>
<tr>
<td>1g</td>
<td>1</td>
<td>1,768,100</td>
<td>83%</td>
<td>3.2x</td>
<td>54,635</td>
<td>879</td>
<td>55,514</td>
<td>59%</td>
</tr>
<tr>
<td>2a</td>
<td>1</td>
<td>2,611,195</td>
<td>94%</td>
<td>4.7x</td>
<td>64,456</td>
<td>2,084</td>
<td>66,540</td>
<td>71%</td>
</tr>
<tr>
<td>2b</td>
<td>1</td>
<td>2,670,266</td>
<td>94%</td>
<td>4.8x</td>
<td>65,106</td>
<td>2,369</td>
<td>67,475</td>
<td>72%</td>
</tr>
<tr>
<td>2c</td>
<td>1</td>
<td>4,429,072</td>
<td>97%</td>
<td>7.9x</td>
<td>68,256</td>
<td>931</td>
<td>69,187</td>
<td>74%</td>
</tr>
<tr>
<td>2d</td>
<td>1</td>
<td>1,811,129</td>
<td>85%</td>
<td>3.2x</td>
<td>56,902</td>
<td>1,047</td>
<td>57,949</td>
<td>62%</td>
</tr>
<tr>
<td>2e</td>
<td>1</td>
<td>2,382,349</td>
<td>86%</td>
<td>4.2x</td>
<td>57,949</td>
<td>1,337</td>
<td>59,286</td>
<td>63%</td>
</tr>
<tr>
<td>2f</td>
<td>1</td>
<td>2,676,214</td>
<td>88%</td>
<td>4.8x</td>
<td>59,175</td>
<td>1,819</td>
<td>60,994</td>
<td>65%</td>
</tr>
<tr>
<td>2g</td>
<td>1</td>
<td>1,749,264</td>
<td>80%</td>
<td>3.1x</td>
<td>52,186</td>
<td>1,013</td>
<td>53,199</td>
<td>57%</td>
</tr>
<tr>
<td>2h</td>
<td>1</td>
<td>2,610,803</td>
<td>90%</td>
<td>4.7x</td>
<td>60,474</td>
<td>1,682</td>
<td>62,156</td>
<td>66%</td>
</tr>
<tr>
<td>3a</td>
<td>1</td>
<td>2,958,632</td>
<td>96%</td>
<td>5.3x</td>
<td>67,572</td>
<td>2,530</td>
<td>70,102</td>
<td>75%</td>
</tr>
<tr>
<td>3b</td>
<td>1</td>
<td>2,729,282</td>
<td>94%</td>
<td>4.9x</td>
<td>64,309</td>
<td>1,820</td>
<td>66,129</td>
<td>71%</td>
</tr>
<tr>
<td>3c</td>
<td>1</td>
<td>5,980,205</td>
<td>99%</td>
<td>10.7x</td>
<td>71,079</td>
<td>2,563</td>
<td>73,642</td>
<td>79%</td>
</tr>
<tr>
<td>3d</td>
<td>1</td>
<td>4,054,558</td>
<td>97%</td>
<td>7.2x</td>
<td>68,312</td>
<td>2,494</td>
<td>70,806</td>
<td>76%</td>
</tr>
<tr>
<td>3e</td>
<td>1</td>
<td>4,073,933</td>
<td>98%</td>
<td>7.3x</td>
<td>66,681</td>
<td>2,470</td>
<td>69,151</td>
<td>74%</td>
</tr>
<tr>
<td>3f</td>
<td>1</td>
<td>4,224,625</td>
<td>98%</td>
<td>7.5x</td>
<td>69,354</td>
<td>2,470</td>
<td>71,824</td>
<td>77%</td>
</tr>
<tr>
<td>3g</td>
<td>1</td>
<td>2,642,452</td>
<td>94%</td>
<td>4.7x</td>
<td>64,569</td>
<td>2,013</td>
<td>66,582</td>
<td>71%</td>
</tr>
<tr>
<td>3h</td>
<td>1</td>
<td>3,086,857</td>
<td>97%</td>
<td>5.5x</td>
<td>66,156</td>
<td>3,050</td>
<td>69,206</td>
<td>74%</td>
</tr>
<tr>
<td>3i</td>
<td>1</td>
<td>4,978,091</td>
<td>98%</td>
<td>8.9x</td>
<td>70,196</td>
<td>3,632</td>
<td>73,828</td>
<td>79%</td>
</tr>
<tr>
<td>4a</td>
<td>1</td>
<td>4,951,138</td>
<td>98%</td>
<td>8.8x</td>
<td>70,161</td>
<td>4,497</td>
<td>74,658</td>
<td>80%</td>
</tr>
<tr>
<td>4b</td>
<td>1</td>
<td>3,639,466</td>
<td>96%</td>
<td>6.5x</td>
<td>66,881</td>
<td>2,945</td>
<td>69,826</td>
<td>75%</td>
</tr>
<tr>
<td>4c</td>
<td>1</td>
<td>2,236,037</td>
<td>90%</td>
<td>4.0x</td>
<td>64,688</td>
<td>1,104</td>
<td>65,792</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>1</td>
<td>3,158,135</td>
<td>94%</td>
<td>5.6x</td>
<td>64,967</td>
<td>2,362</td>
<td>67,329</td>
<td>72%</td>
</tr>
<tr>
<td>4e</td>
<td>1</td>
<td>4,542,615</td>
<td>97%</td>
<td>8.1x</td>
<td>68,180</td>
<td>3,695</td>
<td>71,875</td>
<td>77%</td>
</tr>
<tr>
<td>4f</td>
<td>1</td>
<td>3,751,727</td>
<td>96%</td>
<td>6.7x</td>
<td>66,799</td>
<td>3,138</td>
<td>69,937</td>
<td>75%</td>
</tr>
</tbody>
</table>

Average depth is defined as number of aligned reads multiplied by the read length divided by the size of the X chromosome. Percent coverage is the amount of the X chromosome covered with at least 1 read. SNPs and indels for parental lines are defined as SNPs and indels compared to the published reference that differ between the two lines with a quality score ≥ 30. SNPs and indels for progeny lines are defined as SNPs and indels that exist in the parents that were also seen in the progeny with a quality score ≥ 30.

D. E. Miller et al. 3 SI