Dissecting the satellite DNA landscape in three cactophilic Drosophila sequenced genomes

Leonardo G. de Lima¹, Marta Svartman¹, Gustavo C.S. Kuhn¹

¹ Universidade Federal de Minas Gerais, Laboratório de Citogenômica Evolutiva, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Avenida Presidente Antônio Carlos, 6627 – Pampulha, 31270-901. Belo Horizonte, Brazil.
Running Title: Satellite DNA in Cactophilic Drosophila

Corresponding author: Leonardo G. de Lima
E-mail: leonardogdlima@gmail.com

Universidade Federal de Minas Gerais, Laboratório de Citogenômica Evolutiva,
Departamento de Biologia Geral, Instituto de Ciências Biológicas, Avenida Presidente
Antônio Carlos, 6627 – Pampulha, 31270-901. Belo Horizonte, Brazil.
Telephone: +5531-34092612/+5531-992549563
FAX: +5531-34092567
Abstract

Eukaryote genomes are replete with repetitive DNAs. This class includes tandemly repeated satellite DNAs (satDNA) which are among the most abundant, fast evolving (yet poorly studied) genomic components. Here, we used high throughput sequencing data from three cactophilic Drosophila species, D. buzzatii, D. seriema and D. mojavensis, to access and study their whole satDNA landscape. In total, the RepeatExplorer software identified five satDNAs, three previously described (pBuM, DBC-150 and CDSTR198) and two novel ones (CDSTR138 and CDSTR130). Only pBuM is shared among all three species. The satDNA repeat length falls within only two classes, between 130-200bp or between 340-390bp. FISH on metaphase and polytene chromosomes revealed the presence of satDNA arrays in at least one of the following genomic compartments: centromeric, telomeric, subtelomeric or dispersed along euchromatin. The chromosomal distribution ranges from a single chromosome to almost all chromosomes of the complement. Fiber-FISH and sequence analysis of contigs revealed interspersion between pBuM and CDSTR130 in the microchromosomes of D. mojavensis. Phylogenetic analyses showed that the pBuM satDNA underwent concerted evolution at both interspecific and intraspecific levels. Based on RNAseq data, we found transcription activity for pBuM (in D. mojavensis) and CDSTR198 (in D. buzzatii) in all five analyzed developmental stages, most notably in pupae and adult males. Our data revealed that cactophilic Drosophila present the lowest amount of satDNAs (1.9% to 2.9%) within the Drosophila genus reported so far. We discuss how our findings on the satDNA location, abundance, organization and transcription activity may be related to functional aspects.

Key words:

Satellite DNA; cactophilic Drosophila, Centromeres; Telomeres; Concerted Evolution.
Introduction

The genomes of many organisms are replete with highly repetitive (>1,000 copies) tandemly repeated DNA sequences, commonly known as satellite DNAs (satDNAs) (Tautz 1993). Long and homogeneous arrays made of satDNA repeats are located in the heterochromatin (Charlesworth et al. 1994; Plohl 2012; Beridze 2013; Khost et al. 2016), but recent studies also revealed the presence of short arrays dispersed along the euchromatin (Kuhn et al. 2012, Brajkovic 2012, Larracuente 2014, Pavlek 2015). SatDNAs do not have the ability to transpose by themselves as transposable elements (TEs) do. However, there are some reported examples showing that TEs may act as a substrate for satDNA emergence and mobility (Dias et al. 2014; Mestrovic et al. 2015; Satovic et al. 2016).

The whole collection of satDNAs makes large portions (usually more than 30%) of animal and plant genomes (reviewed by Plohl et al. 2007). Although satDNAs do not code for proteins, they may play important cellular roles, including participation in chromatin packaging (Blattes et al. 2006; Fellicielo et al. 2015), centromere formation/maintenance (Rosic et al. 2014; Aldrup-MacDonald et al. 2016) and gene regulation (Menon et al. 2014; Fellicielo et al. 2015; Urrego et al. 2017).

Despite their abundance, diversity and contribution to genomic architecture and function, our knowledge about several features of satDNAs is still limited. In the past decades, satDNAs have been mostly studied from a small sample of cloned repeats obtained by biased experimental approaches (usually by restriction digestion and/or PCR), isolated from one or few species. Experimental strategies for the identification of satDNAs were expensive, time-consuming and insufficient for the identification of the whole collection of satDNAs from any chosen genome.
Next-generation sequencing technologies have provided a revolution in the number of species with sequenced genomes, while new and efficient bioinformatic tools have been specifically developed towards genome-wide identification of repetitive DNAs. Consequently, we have now new tools and strategies to access the whole collection of satDNAs from a given genome. For example, software tools known as RepeatExplorer have been successfully used for genome-wide characterization of repetitive DNAs from several animal and plant genomes, including those sequenced with less than 1x coverage (Barghini et al. 2014; Marques et al. 2015; Ruiz-Ruano et al. 2016; Zhang et al. 2017). This algorithm directly uses short next generation sequencing reads as rough material for the identification of repeats. Together with the results from similarity searches and abundance, the repeat families can be identified and classified.

Within the genus Drosophila, most studies on satDNA were conducted in D. melanogaster and in a few closely related species from the melanogaster group (e.g. Strachan et al. 1985; Kuhn et al. 2012; Larracuente et al. 2014; Garrigan et al. 2014; Jagannathan et al. 2016). The study of satDNAs of species distantly related to D. melanogaster are expected to broaden the understanding of this major fraction of the eukaryote genome. In this context, the repleta group is of particular interest. It contains at least 100 species that breed in cactuses in North and South America (Oliveira et al. 2012). Species from the repleta group are separated from the melanogaster group by more than 40My (Powell et al. 1997). Intense vertical studies in some species of this group revealed several aspects related to chromosome and genome evolution that have broad interest (e.g. Cáceres et al. 1999; Negre et al. 2005; Kuhn et al. 2009; Guillen et al. 2015).

At present, three repleta group species have available sequenced genomes: D. mojavensis (Drosophila 12 Genomes Consortium 2007), D. buzzatii (Guillen et al.
and *D. seriema* (Dias et al. in prep). *D. buzzatii* and *D. seriema* belong to the *buzzatii* cluster, a monophyletic group of South American origin that contains seven species morphologically very similar and came from an radiation process dated at 6 Mya (Manfrin and Sene 2006; Oliveira et al. 2012). *D. mojavensis* lives in the deserts and dry tropical forests of the southwestern United States and Mexico (Reed et al. 2007). The time since the split between *D. buzzatii* and *D. mojavensis* has been estimated in 11 Mya (Oliveira et al. 2012; Guillén et al. 2015).

Previous studies in *D. buzzatii* and *D. seriema* conducted before the genomic era allowed the identification of three satDNA families. The first family, named *pBuM*, can be divided into two subfamilies according to its primary structure and size of the repeat units (Kuhn and Sene 2005). The *pBuM*-1 subfamily is comprised of alpha repeat units of approximately 190 bp, whereas the *pBuM*-2 subfamily consists of 370 bp composite repeat units called alpha/beta, each one consisting of an alpha (~190 bp) followed by a beta sequence (~180bp) of unknown origin. DNA hybridization data revealed *pBuM*-1 to be the major repeat variant present in *D. buzzatii* but *pBuM*-2 as the major repeat variant in *D. seriema*.

The second family, named *DBC-150*, consists of 150 bp long repeat units. This family is abundant in *D. seriema* but virtually absent in *D. buzzatii* (Kuhn et al. 2007). Finally, the third satDNA family, named *SSS139*, with 139 bp long repeat units is abundant in *D. seriema* but absent in *D. buzzatii* (Franco et al. 2008). There is no significant sequence similarity among from *pBuM*, *DBC-150* and *SSS139* satDNA families repeats, suggesting that they have independent evolutionary origins.

Three sequencing platforms (Sanger, 454 and Illumina) (Guillén et al. 2015) have been used to sequence the *D. buzzatii* genome, which became publicly available in 2015 (http://dbuz.uab.cat). In a preliminary approach, we used the Tandem Repeats...
Finder (TRF) software (version 4.04) (Benson 1999) to search for satDNAs with repeats longer than 50 bp in the *D. buzzatii* contigs. The two most abundant tandem repeat families identified were *pBuM*-1 (*alpha* repeats) and a novel family that we named *CDSTR198*, with 198 bp long repeat units (Guillén et al. 2015). However, in *D. melanogaster* and *D. virilis*, for example, several abundant satDNA families showed repeat units less than 10 bp long (Gall et al. 1971; Lohe et al. 1993). Therefore, a new satDNA screen is necessary in the *D. buzzatii* sequenced genome in order to look for the presence of small-size satDNA repeat motifs.

There are no detailed studies involving satDNAs in *D. mojavensis*. Melters *et al.* (2013) developed a bioinformatic pipeline to identify the most abundant tandem repeats from 282 selected sequenced genomes from animal and plant species, including some *Drosophila* species. A satDNA with 183 bp long repeat units was identified as the most abundant satDNA of *D. mojavensis*. Most recently, we showed that this satDNA actually belongs to the *pBuM*-1 satDNA subfamily (*alpha* repeats), previously described in *D. buzzatii* (Guillén et al. 2015).

Our group has recently sequenced the genome of *D. seriema* using the MiSeq platform (Dias et al. in preparation). The availability of three sequenced genomes (*D. buzzatii*, *D. seriema* and *D. mojavensis*) provides an unprecedented opportunity to study the satDNA collection from each species and to compare them in a scale never possible before. We combined bioinformatic, phylogenetic and molecular cytogenetic tools to study the satDNA fraction from these three cactophilic *Drosophila* species. The resulting data are discussed in the context of satDNA genomic distribution, evolution and potential functional roles.
Material and Methods

Genomic data

The Illumina sequence reads from *D. buzzatii*, *D. mojavensis* and *D. seriema* used for identification of satDNAs were obtained from three different sources: *D. buzzatii* reads (76x coverage) were generated by Prof. Alfredo Ruiz group at Universitat Autonoma de Barcelona and were used for the genome assembly of *D. buzzatii* (Guillen et al. 2015). All *D. buzzatii* Illumina reads used on this paper were downloaded directly from the *Drosophila buzzatii* genome project webpage (http://dbuz.uab.cat). This data is publicly available for download on the FTP section (http://dbuz.uab.cat/ftp.php); Moreover, we used *D. mojavensis* (SRX2932915) sequence reads (20x coverage) generated by Prof. Bernardo de Carvalho (Universidade Federal do Rio de Janeiro, Brazil); and *D. seriema* (ERX2037878) sequence reads (20x coverage) were generated by our group (Dias et al. in prep).

Identification of satellite DNAs

Similarity-based clustering, repeat identification and classification were performed using *RepeatExplorer* (Novák et al. 2013) with whole-genome shotgun (WGS) Illumina reads from *D. buzzatii*, *D. mojavensis* and *D. seriema*. Initially, files containing all sequence reads from each species were uploaded (trimmed at 100 bp). The clustering analysis used *RepeatExplorer* default parameters. Clusters containing possible tandemly repeated satDNA families were identified based on the resultant graph-based clustering and then manually checked for the presence of tandem repeats using the Tandem Repeats Finder (TRF) software (version 4.04) (Benson 1999). Genomic proportion was calculated from the number of reads present in each cluster divided by the total number of reads. We searched for clusters with high graph density, which is a typical
characteristic of satDNAs families (Novák et al. 2013). The Dotlet software (Junier and Pagni 2000) was also used to generate a scrutinized description of full length copies of each satDNA family.

Sequence and phylogenetic analysis

Multiple satDNAs sequences were aligned with the Muscle algorithm (Edgar 2004) of the MEGA5.05 software (Tamura et al. 2011), with manually optimization when necessary. MEGA5.05 was also used for the analysis of nucleotide composition and variability. Phylogenetic trees were constructed with the Neighbor Joining algorithm (Saitou and Nei 1987) of the MEGA program 5:05 (Tamura et al. 2011). The genetic distance between sequences was calculated using the "Tamura-Nei model" (Tamura and Nei 1993) after an analysis of best substitution model for the data on MEGA 5.05 (Tamura et al. 2011). Statistical evaluation of each branch of the tree was performed using analysis "bootstrap" (1,000 replicates).

Samples, DNA extractions, PCR amplifications, cloning and sequencing

For our experimental data we used DNA from the same sequenced strains: D. buzzatii (strain: ST01), D. seriema (strain: D73C3B) and D. mojavensis (strain: CI 12 IB -4 g8). DNA extraction of 30-50 adult flies was performed with the Wizard® Genomic DNA Purification kit (Promega). PCR reactions consisted of an initial denaturation step of 94 ºC for 3 min, followed by 30 cycles of 94 ºC for 60 sec, 55 ºC for 60 sec and 72 ºC for 60 sec and then a final extension at 72 ºC for 10 min. The primers used for satDNA amplification are listed on Table S1. PCR products were excised from 1% agarose gels and purified with the Wizard SV Gel and PCR Clean-up System kit (Promega). After cloning with the pGEM-T-Easy cloning kit (Promega),
recombinant plasmids were sequenced on the ABI3130 platform (Myleus Biotechnology).

In situ hybridization experiments

Chromosome preparations, DNA fibers obtention, single and double-colour FISH and Fiber-FISH experiments were conducted as described in Kuhn et al. (2008). The probes labeled with digoxigenin-11-dUTP were detected with anti-digoxigenin FITC (Roche) and probes labeled with biotin-14-dATP were detected with NeutrAvidin-rhodamine (Roche). Chromosomes were stained with DAPI (4', 6-diamidino-2-phenylindole, dihydrochloride salt). The preparations were analyzed under an epifluorescence Zeiss Axiophot 2 microscope equipped with a CCD camera and the images were obtained with the AxioVision software (Zeiss). To determine the size of the DNA fibers, hybridization signals were measured according to the protocol described by Schwarzacher and Heslop-Harrison (2000).

Transcription Analysis

Total RNA-Seq data of *D. mojavensis* and *D. buzzatii* (st-1 strain) were those obtained by Guillen et al (2015). Briefly, RNA samples were extracted from 10-20 individuals from each of the four development stages (embryos, third-stage larvae, pupae, adult females and males), enriched for mRNA by poly-A tail selection and sequenced by Illumina, generating ~100 bp reads (see Guillen et al. 2015 for details). All reads were aligned against consensus sequences representing the *pBuM* and *CDSTRI98* families from *D. buzzatii* and *pBuM* and *CDSTR130* from *D. mojavensis* with the Bowtie2 software (Langmead and Salzberg 2012) incorporated into the usegalaxy.org server (Afgan et al. 2016). The mapped reads were normalized by the RPKM method (reads per kilobase per million mapped reads; Mortavazi et al. 2008).
Results and Discussion

Cactophilic *Drosophila* Repetitive DNAs: general aspects

The RepeatExplorer graphic representation containing all identified repetitive DNA clusters in *D. buzzatii*, *D. seriema* and *D. mojavensis* and their genome proportion (%) is shown in Figures S1-S3. Most clusters making more than 0.01% of the genome could be classified into established groups of repetitive elements, such as TEs, satDNAs or rDNA sequences (Figure 1; Tables S2-S4).

The satDNA genomic contribution is similar in the three species: ~1.9% in *D. buzzatii*, ~2.9% in *D. seriema* and ~2.5% in *D. mojavensis*. The genomic contribution of the classified TEs is on average 5.4 x higher: ~12% in *D. buzzatii*, ~18% in *D. seriema*, and ~11% in *D. mojavensis*. Rius et al. (2016) have recently estimated the TE content of *D. buzzatii* and *D. mojavensis* using the same genomic sequences used in this work, but with a different methodology) and found that TEs represent ~11% of the *D. buzzatii* and ~15% of the *D. mojavensis* genomes.

The genomic contribution of the different TE orders (TIR-transposons, Helitrons, LTR-retrotransposons and Non-LTR retrotransposons) differs among the three species (Figure 1). TIR-transposons are the most abundant TEs in the *D. buzzatii* genome (3.85%); in *D. seriema* LTR-retrotransposons (6.8%) are the most abundant and in *D. mojavensis*, Helitrons are the most abundant TE elements (3.25%). Conversely, Rius et al. (2016) described Helitrons as the most abundant TEs in the *D. buzzatii* and *D. mojavensis* genomes. Interestingly, the genomic contribution of LTR-retrotransposons in *D. seriema* (6.8%) is at least two times higher than in *D. buzzatii* (2.9%) or in *D. mojavensis* (2.4%). The contribution of unclassified repetitive elements
is also considerably higher in *D. seriema* (18%) than in the other two species (11% and 12%). These results suggest a recent burst of repetitive elements in *D. seriema*.

Satellite DNA landscape in the three cactophilic *Drosophila* species

We identified only two previously described satDNA families in *D. buzzatii*. The *pBuM*-1 satDNA (Kuhn and Sene 2005) with 189 bp long *alpha* repeats is the most abundant, representing 1.7%. The second is *CDSTR198* (Guillen et al. 2015), with 198 bp long repeats and representing 0.2% of the genome. These genomic contributions revealed by *RepeatExplorer* are higher than those obtained by our first contig-based approach, most notably for *pBuM*-1 (0.04% for *pBuM*-1 and 0.03% for *CDSTR198*; Guillen et al. 2015). The organization of satDNAs, made of several tandem repeats with high DNA sequence similarity, imposes a huge limitation for assembly computer programs. Consequently, it is very likely that the bulk of *pBuM* and *CDSTR198* satDNA repeats of *D. buzzatii* were omitted from the contigs used in our previous approach. Accordingly, although still low (see discussion below), we consider the values obtained in the present work as the most reliable ones.

We detected four satDNAs in *D. seriema*. The *pBuM*-2 satDNA with ~340-390 bp long *alpha/beta* repeat units (Kuhn and Sene 2004) is the most abundant, representing 1.93% of the genome. The second satDNA is DBC-150 (Kuhn et al. 2007), with ~110-150 bp long repeat units and representing 0.8% of the genome. The third satDNA is a novel one and was named *CDSTR138*, with 138 bp long repeat units and representing 0.23% of the genome. The fourth satDNA is *CDSTR198*, which is shared with *D. buzzatii*, but represents only 0.02% of the *D. seriema* genome.

The SSS139 satDNA, with 139 bp long repetition units was previously described in *D. seriema* (Franco et al. 2008). In the *RepeatExplorer* output, we found
sequences homologous to SSS139 in the 10th most abundant repeat cluster, representing 0.5% of the genome. However, detailed sequence analysis revealed that this cluster is not made of tandem repeats. Instead, most sequences correspond to a ~30 bp SSS139 inverted fragment interrupted by a region variable both in size and identity, followed by a ~120 bp SSS139 sequence in direct orientation. Interestingly, these variable regions or the SSS139 sequences themselves showed no similarity to any TE or satDNA family previously described. Therefore, further studies will be necessarily for elucidating the nature of the SSS139 repetitive elements.

We found two satDNAs in *D. mojavensis*. The most abundant is a novel one, which we named *CDSTR*130, with 130 bp long repeat units and representing 1.63% of the genome. It is worth noting, however, that RepBase identified these sequences as a Long Terminal Repeats (LTR) BEL3_DM-I element described in *D. mojavensis* (Jurka 2012). This LTR has been characterized from *D. mojavensis* scaffold 5562 (nucleotide positions 8682 to 13043 bp). However, the scrutinized analysis of 100 BEL3-DM insertions on the *D. mojavensis* genome showed that the 130 bp tandem repeats are not part of the LTR, but only flank the element in the scaffold 5562 (Figure 2). The identification of *CDSTR*130 as a satDNA highlights the importance of manual curation of the automated output provided by RepeatExplorer. It also explains why Melters et al. (2013) did not identify *CDSTR*130 as the most abundant tandem repeat family in the *D. mojavensis* genome.

The second most abundant satDNA identified in *D. mojavensis* is the *pBuM*-1 variant from the *pBuM* family (shared with *D. buzzatii* and *D. seriema*), with 185 bp long repeats and representing 0.86% of the genome. This satDNA has been previously identified as the most abundant tandem repeat family of *D. mojavensis* by Melters et al (2013).
The main features of the satDNAs identified above are summarized in Table 1 and a list containing consensus sequences from all the new satellites described in the present work can be seen in Figure S4.

Cactophilic Drosophila species present the lowest satDNA content within the genus

In most analyzed Drosophila species, the satDNA proportion fall within the range of between 15-40% (Bosco et al 2007; Craddock et al. 2016). We found that the pBuM and CDSTR130 satDNAs represent only 2.5% of the D. mojavensis genome. Our result, obtained from the analyses of sequence reads using RepeatExplorer, was very close to the 2% satDNA contribution estimated by Bosco et al. (2007) using flow cytometry. In addition, we also found low amounts of satDNAs in the genomes of the other two cactophilic Drosophila: 1.9% for D. buzzatii and 2.9% for D. seriema. The additional 1% of the D. seriema in relation to D. buzzatii is probably represented by sequences located in the microchromosome of D. seriema, which is larger than that of D. buzzatii and also contains a higher amount of satellites (pBuM-2 and DBC-150) when compared to the other chromosomes (Figure 9; Kuhn et al. 2007, 2009). Our data revealed that cactophilic Drosophila present the lowest amount of satDNAs within the Drosophila genus reported so far. On the other hand, the estimated contribution of repetitive DNAs (satDNA+TE+unclassified repeats) in the three cactophilic Drosophila (14%-27%) is not atypical for the genus (Drosophila 12 Genomes Consortium 2007; Craddock et al. 2016). Future studies focusing on satDNAs of more populations and species of the repleta group are expected to shed light on whether the low satDNA content in cactophilic Drosophila is a result of selective constraints or historical events.

Preferential satDNA repeat lengths in cactophilic Drosophila
SatDNA repeats in the three studied cactophilic *Drosophila* have lengths of 130-200 bp or between 340-390 bp. In order to confirm this result, we ran *RepeatExplorer* with sequence reads from *D. melanogaster* where satDNA repeats less than 10bp are abundant. *RepeatExplorer* correctly identified them as the most abundant repetitive DNAs of *D. melanogaster* (Table S5). Therefore, we concluded that the preferential lengths for satDNA repeats in the three cactophilic *Drosophila* are not an artifact generated by *RepeatExplorer*.

Interestingly, satDNA repeats described before the genomic era in many plant and animal species (including *Arabidopsis*, maize, humans and many insect species) typically show basic repeat units 150-180 or 300-360bp long (Henikoff et al. 2001; Heslop-Harrison et al. 2003). Similar repeat-length patterns have been confirmed with recent genome-wide analysis of tandem repeats in other organisms. For example, Pavlek et al. (2015) showed that the most abundant tandem repeat families in the beetle *Tribolium castaneum* present repeat lengths either around ~170 bp or around ~340 bp long. It is difficult to explain such preferential repeat lengths by chance. On the other hand, it is striking that these two peak units closely correspond to the length of DNA wrapped around one or two nucleosomes.

It has been hypothesized that satDNA length could play a critical role in DNA packaging by favoring nucleosome positioning (or phasing) that in turn leads to condensation of certain genomic regions, such as the heterochromatin (Fitzgerald et al. 1994; Henikoff et al. 2001). Accordingly, the preferential lengths observed in the satDNA from cactophilic *Drosophila* could be selectively constrained by a possible role in chromatin packaging.

Satellite DNA candidates for centromeric function
The centromeres of most plant and animal species are composed of long arrays of tandemly repeated satellite DNAs (Plohl et al. 2014). There is increasing evidence to a role for satDNA in centromeric function by providing motifs for centromeric-protein binding, e.g. CENP-B box in alphoid human satDNA (Ohzeki et al. 2002), and/or by producing RNA transcripts that are necessary to centromere/kinetochore assembly (Gent and Dawe 2012; Rosic et al. 2014). On the other hand, centromeric satDNAs may differ greatly even between closely related species. In fact, there are several examples supporting the observation that satDNA is one of the most rapidly evolving components of the genomes. Therefore, the identification of the most likely candidate for centromere function in a species is a task that in most cases has to be performed on a case-by-case basis.

Based on data collected from several animal and plant genomes, Melters et al. (2013) suggested that the most abundant tandem repeat of a genome would also be the most likely candidate for centromeric location and function. In order to test this hypothesis, we investigated by FISH the chromosomal location of all satDNAs identified in the three cactophilic Drosophila sampled in the present study.

All three species share the same basic karyotype (2n=12) consisting of four pairs of telocentric autosomes, one pair of microchromosomes and one pair of sex chromosomes (Baimai et al. 1983; Kuhn et al. 1996; Ruiz et al. 1990). Heterochromatin is located in the centromeric region of all four telocentric chromosomes, along the whole microchromosomes and Y chromosome and covering approximately 1/3 of the proximal region of the X chromosome.

We identified the pBuM-1 alpha repeats as the most abundant satDNA of D. buzzatii. In a previous study, Kuhn et al. (2008) showed by FISH on mitotic chromosomes that pBuM-1 alpha repeats are located in the centromeric heterochromatin.
of all chromosomes except the X. In order to further investigate the chromosomal location of \(pBuM \), we also hybridized a \(pBuM-1 \) probe to the polytene chromosomes. In these chromosomes, the centromeric heterochromatin is underreplicated and forms a dense central mass in the chromocenter - a region where the centromeres of all chromosomes bundle together. We observed that the \(pBuM-1 \) repeats are restricted to the chromocenter region (Figure 3a), therefore confirming their centromeric location.

The second most abundant satDNA in \(D. buzzatii \) is \(CDSTR198 \), which was mapped by FISH in terminal and interstitial locations on metaphase chromosomes (these results are detailed below). Therefore, the most abundant satDNA of \(D. buzzatii \), i.e., \(pBuM \), is the one showing centromeric location in most chromosomes.

In \(D. seriema \), the most abundant satDNA identified was \(pBuM-2 \) and the second most abundant was \(DBC-150 \). Previous studies showed that \(pBuM-2 \) is located on the centromeric regions of chromosomes 2, 3, 4 and 5 and on the telomeric regions of chromosome 6 (Kuhn et al. 2008). \(DBC-150 \) was found exclusively on the centromeric region of chromosome 6 (Kuhn et al. 2007). \(CDSTR138 \), the new satDNA described herein, is the third most abundant tandem repeat of this species and was mapped by FISH at the centromeric region of chromosomes 2, 3, 4 and 5 in mitotic chromosomes (Figure 4b). The centromeric location was also confirmed after FISH on polytene chromosomes, where no hybridization signals were observed outside the chromocenter (Figure 3a). The fourth identified satDNA in \(D. seriema \), \(CDSTR198 \), showed no hybridization signal after FISH on mitotic chromosomes, confirming that it has very low copy number in this species (in contrast to \(D. buzzatii \)). However, we detected a few \(CDSTR198 \) repeats in the euchromatin after FISH on polytene chromosomes (Figure 3b; see below). Therefore, all three most abundant satDNAs of \(D. seriema \) are part of the centromeric region of most chromosomes.
CDSTR130 was identified as the most abundant satDNA in *D. mojavensis*, FISH on mitotic chromosomes showed that CDSTR130 repeats are located at the centromeric region of all autosomes and the X chromosome (Figure 4d). The second most abundant satDNA is *pBuM*-1, which covered the microchromosome (chromosome 6) almost entirely (Figure 4d). Therefore, both *pBuM*-1 and CDSTR130 are abundant in chromosome 6. However, given the size and dot-like morphology of this chromosome in this species, it is not possible to determine which one shows centromeric location. The analysis of the polytene chromosomes showed that the two satDNAs co-localize in the chromocenter region (Figure S5).

Based on the collection and chromosome distribution of the satDNAs discussed herein, the centromeric regions of the X chromosome of *D. buzzatii*, of the X and Y of *D. seriema* or of the Y of *D. mojavensis* are not composed of satDNAs. Some centromeres described in plants and animals are composed of transposable elements (reviewed by Plohl et al. 2014). In *Drosophila*, DINE-1 elements (helitrons) are one of the most abundant types of transposable elements (Yang and Barbash 2008). Kuhn and Heslop-Harrison (2011) and Dias et al. (2015) showed by FISH on mitotic chromosomes that these elements are highly enriched in the sex chromosomes (including the centromeric regions) in the three analyzed species from the *repleta* and *virilis* groups. It is possible that these DINE-1 elements are the main components of the centromeres of the sex chromosomes of cactophilic *Drosophila* species.

According to RepeatExplorer, the genomic proportion of satDNA in *D. mojavensis* (CDSTR130+*pBuM*) is 2.5% (Table 1). This value is very close to the 2% satDNA contribution estimated by Bosco et al. (2007) using flow cytometry in the same species. According to the authors, if we split the ~2% satDNA evenly among the *D. mojavensis* chromosomes that would result in ~430 kb for each centromere. As noted by
the authors, this value is also very close to what is considered as the minimum amount
of centromeric DNA (420kb) needed to fulfill centromeric function in *Drosophila* (Sun
et al. 1993). In this context, Bosco et al (2007) emphasized that it would be valuable to
identify the centromeric satDNA of *D. mojavensis* and other *Drosophila* species to
investigate whether they agree with the ~420kb limit observed in *D. melanogaster*.

In the present work, we found that *pBuM* and *CDSTR130* are the main
centromeric components of *D. buzzatii* and *D. mojavensis*. According to previous
estimates, the male genome size of *D. buzzatii* and *D. mojavensis* is around 170 Mb
(Gregory and Johnston 2008; Romero-Soriano et al. 2016). Accordingly, we calculated
that the bulk of centromeric satDNA in *D. buzzatii* is 2.9 Mb and in *D. mojavensis*, 2.8
Mb. If we split these values equally between the number of centromeres (= 6), each
centromere will have ~480 kb of centromeric DNA in *D. buzzatii* and ~460 kb in
D.mojavensis. These suggests cactophilic *Drosophila* have centromeric sizes
roughly470 kb on average, a value close to the suggested limit of 420 kb necessary for a
functional centromere in *Drosophila* (Sun et al. 1993).

New insights on *pBuM* distribution and evolution

According to previous data on the distribution of *pBuM-1 alpha* and *pBuM-2
alpha/beta* repeats in the phylogeny of *Drosophila* species from the *buzzatii* cluster
(*repleta* group), it was proposed that the ancestral state of the *pBuM* satDNA family
consisted of *alpha* tandem repetition units around 190bp long. The *alpha/beta* repeats
would have been originated subsequently from an insertion of a non-homologous
sequence of 180 bp (*beta*) in an *alpha* array, resulting in a composite *alpha/beta* repeat
unit that also became abundant and tandemly organized (Kuhn and Sene 2005).
We found only alpha repeats in the genome of *D. mojavensis*, which is consistent with the hypothesis that alpha repeats represent the ancestral state of the *pBuM* family. According to current estimates, the split between the *buzzatii* and *mojavensis* clusters occurred around 11 Mya (Oliveira et al. 2012; Guillén et al. 2015), which would be the minimum age for the origin of the *pBuM* family.

In *D. seriema*, we detected only *pBuM-2* repeats, which agrees with previous DNA hybridization data (Kuhn and Sene 2005) suggesting that *pBuM-2* is the only *pBuM* subfamily present in this species. The split between *D. buzzatii* and *D. seriema* was estimated to have happened around 3 Mya (Franco et al. 2010). Therefore, in the last 3 My, it seems that there was a complete turnover from *pBuM-1* to *pBuM-2* repeats in the genome of *D. seriema*.

According to our FISH experiments on mitotic and polytene chromosomes, *pBuM* repeats are restricted to the heterochromatic regions. However, BLAST on the assembled genome (Freeze 1 Scaffolds) of *D. buzzatii* revealed fragments of *pBuM-1* repeats on three scaffolds (1, 88 and 90) that were mapped to the euchromatin from chromosomes 2, 5 and X (see Guillén et al. 2015 for exact location of scaffolds). The three observed *pBuM-1* euchromatic loci contain either a partial *pBuM-1* repeat (less than 189 bp) or at most two partial *pBuM-1* tandem repeats (less then < 300bp), and such small sizes were probably the reason they were undetected in our FISH experiments. The analysis of flanking sequences did not show evidence that these euchromatic *pBuM-1* sequences could be integral parts of transposable elements and the mechanism(s) responsible for their presence on euchromatin are currently unknown.

Previous phylogenetic analyses of *pBuM* repeats in *D. buzzatii* and *D. seriema* showed that these repeats have been evolving according to the concerted evolution model (Kuhn and Sene 2005). In other words, repeats within each species are more
similar to each other than to repeats between species. In order to test whether \(pBuM \) also

evolved in concert in \(D. \ mojavensis \), we constructed a NJ tree with all \(pBuM \) repeats
extracted from \(D. \ buzzatii \), \(D. \ seriema \) and \(D. \ mojavensis \) (Figure 5). The NJ tree

revealed \(pBuM \) repeats from each species allocated in species-specific branches,
indicating that \(pBuM \) has been evolving in a concerted manner in the last 11Mya.

The presence of \(pBuM \) in the non-recombining Y allowed independent homogenization

In a previous report, the analysis of 63 \(pBuM-1 \) \(\alpha \) repeats from \(D. \ buzzatii \)

revealed very low levels of inter-repeat variability (4.2% on average), indicating that,
despite multiple chromosomal location, \(pBuM \) arrays have been efficiently homogenized at the intraspecific level (Kuhn et al. 2003). However, one repeat (Juan/4) showed atypical levels of nucleotide divergence in comparison to the remaining repeats (22% on average). Kuhn et al. (2003) suggested that this repeat may belong to another, less abundant, \(pBuM \) subfamily.

In the present work, we retrieved a sample of 247 \(pBuM-1 \) repeats from the sequenced genome of \(D. \ buzzatii \) and used them to construct a NJ tree. The resulting tree split the repeats into two main branches (Figure 6). The major one, containing 194 repeats, contains the “typical” \(pBuM-1 \) repeats, described in Kuhn et al. (2003). The second minor branch, with 53 repeats, contains “Juan/4-like” \(pBuM-1 \) repeats. Between the two groups, the nucleotide difference is 24.2%.

These data are consistent with the hypothesis of two \(pBuM \) subfamilies being present in the \(D. \ buzzatii \) genome. Herein, we will name them as \(pBuM-1a \) (typical) and \(pBuM-1b \) (“Juan/4-like”). All the data generated so far about \(pBuM \) from \(D. \ buzzatii \)
(including chromosomal location) concern the typical \(pBuM \)-1a repeat variant. There are several diagnostic nucleotide substitutions that allow discrimination between \(pBuM \) repeats from these two subfamilies. Such a situation allowed us to design oligonucleotides to specifically amplify \(pBuM \)-1b repeats by PCR for probe preparation.

We then performed double-FISH with \(pBuM \)-1a and \(pBuM \)-1b on \(D. buzzatii \) mitotic chromosomes. The \(pBuM \)-1a probe showed the same multichromosomal distribution as described before. However, the \(pBuM \)-1b probe hybridized specifically to the Y chromosome (Figure 4a).

According to the model of concerted evolution, intraspecific homogenization of repeats occurs by recombination events such as unequal crossing over and gene conversion (Dover1982; Dover and Tautz 1986). There is also some evidence suggesting that different arrays on the same or in different chromosomes may experience independent homogenization for arrays- or chromosomal-specific repeat variants (i.e. intragenomic concerted evolution) (Kuhn et al. 2012; Larracuente2014; Khost et al. 2016). In this context, it is expected that arrays with tandem repeats on non-recombining chromosomes, such as the Y, would be specially subjected to independent homogenization. This is most likely the reason for the existence of a different \(pBuM \) subfamily (\(pBuM \)-1b) on the Y chromosome of \(D. buzzatii \). Furthermore, empirical and experimental data showed that low recombination is expected to increase inter-repeat variability (Stephan and Cho 1994; Navajas-Pérez et al. 2006; Kuhn et al. 2007). In fact, \(pBuM \)-1a repeats had a nucleotide difference of 12%, while the \(pBuM \)-1b repeats (restricted to the Y chromosome) showed a higher variability of 17%.

The \textit{CDSTR198} satDNA shows terminal and dispersed distribution
The CDSTR198 satDNA was found in D. buzzatii and D. seriema, but with marked quantitative differences (0.23% in D. buzzatii and 0.02% in D. seriema). FISH on D. buzzatii mitotic chromosomes revealed that this satDNA is located in the terminal regions of chromosomes 2, 3, 4, 5 and X but also spread along euchromatic regions (Figure 4a). FISH on polytene chromosomes of the same species revealed strong hybridization signals in the telomeric regions of chromosomes 2, 5 and X, and in subtelomeric regions of chromosomes 3 and 4 (Figure 3a). Moreover, we detected the presence of CDSTR198 repeats along euchromatic regions of all chromosomes, except on the microchromosome. We found the highest number of CDSTR198 euchromatic signals concentrated in chromosomes 2 and 5 (Figure 3a). Similar results were also obtained by an overall analysis of 37 CDSTR198 euchromatic arrays present in the D. buzzatti assembled genome (Table S6). Interestingly, this analysis showed an equal number of euchromatic arrays present on chromosomes 2 and 3 (11 arrays each), followed by chromosomes 4 and 5 (six arrays each). The fewer euchromatic arrays found in the D. buzzatii genome may result from the computational challenge of repetitive element assembly (Treangen and Salzberg 2012), reinforcing the need of hybridization experiments of satDNA families spread throughout euchromatin. In line with this, it is relevant to suggest that some CDSTR198 arrays identified by FISH may be absent on assembled genomes. FISH on polytene chromosomes of D. seriema showed CDSTR198 located only in a few euchromatic sites (Figure 3b).

In contrast to transposable elements, satDNAs do not have the ability to transpose by themselves. However, there are some reported examples showing that TEs may act as a substrate for satDNA emergence and mobility (Dias et al. 2015; Mestrovic et al. 2015; Satovic et al. 2016). We created a database containing the 500bp sequences immediately before and after each CDSTR198 array (37 in total; Table S6) found in the
assembled scaffolds of D. buzzatii. Comparative analysis of all flanking sequences did not show association to a specific TE or TE family or to any other specific sequence common to all arrays. These results raise the question about the dispersion mechanism of CDSTR198 in the D. buzzati genome.

Tandemly repeated sequences may undergo small recombination events involving copies of the same array in the same orientation. These events may result in the formation of extrachromosomal circular DNAs (eccDNAs) (Cohen and Segal 2009). The occasional presence of a replication initiating region may provide further amplification and new eccDNA copies. Apparently, these eccDNAs can be inserted again into the genome by recombination. This mechanism was proposed to explain the dispersion of copies of the satDNA TCAST2 in Tribolium castaneum (Brajkovic et al. 2012), as well as of the D. melanogaster 1.688 satDNA (Cohen and Segal 2009), which also show an euchromatic dispersed distribution (Kuhn et al. 2012). In order to test this hypothesis it would be interesting to look for the presence of eccDNA containing CDSTR198 repeats in D. buzzatii.

CDSTR198 satDNA may contribute to telomeric function in D. buzzatii

Unlike most eukaryotes, Drosophila telomeric regions are maintained by a sequence complex organized in three subdomains: (i) arrays of TEs (Het-A/TART) responsible for maintaining telomeric sequences; (ii) telomere-associated sequences (TAS), formed by complex repetitive sequences, usually satDNAs, and (iii) a protein complex HOAP required for telomere stability (Silva-Sousa et al. 2012). Although the structure of telomeres is conserved among all Drosophila species, the TEs and TAS sequences are highly variable even among phylogenetically close species (Villasante et al. 2007). Based on the widespread presence of TAS in Drosophila and other species
(including humans), Biesmann et al. (2000) proposed that homologous recombination between terminal satDNA repeats could have been an “ancient” mechanism for telomere extension. Today, TAS regions probably function as a buffer zone between the telomeres and internal chromosome domains (Sharma and Raina 2005).

We could not identify conserved domains for telomeric Het-A and TART TEs in the sequenced genome of *D. buzzatii*, even though these TEs were described in *D. mojavensis* and *D. virilis* (Villasante et al. 2007). Similarly, a recent screening of the *D. buzzatii* sequenced genome for the whole TE content did not identify Het-A or TART elements (Rius et al. 2016). The apparent absence of Het-A and TART in *D. buzzatii* may be related to the high evolutionary rate of these sequences (Villasante et al. 2007). Alternatively, there may be a different mechanism for telomere elongation operating in this species.

The CDSTR198 satDNA is located in the telomeric and subtelomeric regions of five (out of six) chromosomes of *D. buzzatii* (Figures 3a; 4b). The presence of CDSTR198 in the telomeres associated with the apparent absence of Het-A and TART sequences open the possibility that CDSTR198 plays a role in telomere elongation through a recombination-based mechanism (e.g. unequal crossing over). Although not described in *Drosophila*, tandem repeat sequences are responsible for maintaining telomeres in the dipterous genus *Chironomus* (Lopez et al. 1996).

It is important to mention that a similar scenario described herein for the CDSTR198 of *D. buzzatii* was previously reported for *D. virilis*, which belongs to the virilis group. In this non-cactophilic species, the terminal location of the pvB370 satDNA associated with the absence of telomere transposons led Biesmann et al. (2000) to propose the involvement of this satDNA in telomere elongation. However, TART-like and HeT-like elements were later described in the terminal regions of *D. virilis,*
opening the possibility that these elements also participate in telomeric elongation in this species (Casacuberta et al. 2003; Pardue et al. 2005).

pBuM and *CDSTR130* show regions of interspersed distribution in the microchromosomes

FISH with *CDSTR130* and *pBuM* probes on *D. majavensis* mitotic chromosomes revealed that these two satDNA colocalize on the microchromosome. In order to further investigate how these two satDNAs are organized we performed double FISH experiments on extended DNA fibers. We observed strong hybridization signals in fibers showing *CDSTR130* long arrays followed by *pBuM* long arrays (Figure 7a). However, in some DNA fibers hybridization signals indicated an interspersed organization of both satDNAs (Figure 7b). These results were also confirmed in the analysis of *D. majavensis* assembled contigs (Figure 7c). For example, the contig 2999 (AAPU01002998.1) is composed of 4,435 bp of *CDSTR130* copies adjacent to a *pBuM* array of 7,716 bp. In the contig 4,375 (AAPU01004374.1) we observed different arrays of *pBuM* and *CDSTR130* interspersed with each other (Figure 7c).

Non-homologous satDNAs located in the same chromosome region are usually organized in separate arrays (e.g. Shiels et al. 1997; Lohe et al. 1993; Sun et al. 2003). However, there are some reports showing interspersion of repeats from different satellites (e.g. Zinic et al. 2000; Alkhimova et al. 2004; Wei et al. 2014). It has been suggested that interspersion between repeats may give rise to new higher order repeat structures (Mravinac and Plohl 2007; Wei et al. 2014). In a previous study conducted in cactophilic *Drosophila* species, Kuhn et al. (2009) showed high levels of interspersion between *pBuM* and DBC-150 in at least two species of the *buzzatii* cluster (*D. gouveai* and *D. antonietae*). Interestingly, such pattern was also observed in the
microchromosomes. According to Kuhn et al (2009), interspersion of repeats from non-homologous satellites in the microchromosomes could be related to the peculiar characteristics of these chromosomes, such as highly heterochromatic nature and low content of genes, which could allow a more flexible interplay between repetitive elements without deleterious effects.

Differential transcription of cactophilic *Drosophila* satDNAs

SatDNAs do not code for proteins and have been traditionally viewed as “junk DNAs”. However, there is a growing number of studies showing satDNA transcription activity from yeast to mammals and the biological function of these transcripts has now started to be appreciated. For example, satDNA transcripts were shown to be involved in heterochromatin assembly, kinetochore formation and gene regulation (reviewed by Biscotii et al. 2015; Ferreira et al. 2015). Moreover, transcription of satDNAs is usually gender or stage specific and is often associated with differentiation and development (Usakin et al. 2007; Pecinka et al. 2010).

Herein, we investigated whether the satDNAs that we analyzed are transcribed by mapping the satDNA consensus sequences on the available RNA-seq data from *D. buzzatii* and *D. mojavensis* (Guillen et al. 2015; Rius et al. 2016). Read counts were calculated for embryos, third-staged larvae, pupae and for male and female adult carcasses (Figure 8) (See methods).

Our analysis did not identify transcripts from the most abundant satDNAs in the genome of *D. buzzatii* and *D. mojavensis*, *pBuM* and *CDSTR130*, respectively. As discussed previously, both are the main candidates for centromeric function in these species. This result was unexpected because previous studies in *Drosophila melanogaster* showed that centromeric satellite RNAs in the form of long
polyadenylated products play an important role in the formation of the kinetochore (Topp et al. 2004; Chan et al. 2012; Rosic et al. 2014). However, our results do not exclude the possibility that pBuM and CDSTR130 are transcribed. In this case, the absence of satDNA transcripts may be related to the methodology used for RNA extraction that preferentially captures poly(A) sequences. For example, satDNA transcripts of *D. melanogaster* involve ncRNAs that do not have poly(A) tails (Usakin et al. 2007).

Conversely, in all five analyzed tissues we detected transcripts derived from the CDSTR198 satDNA of *D. buzzatii* and from the pBuM satDNA of *D. mojavensis*. In both cases, the transcripts were particularly abundant in tissues from pupae and males. Interestingly, these two satDNAs are located in different genomic environments: while CDSTR198 arrays are located at several euchromatic loci (including some close to genes; Table S7) in several *D. buzzatii* chromosomes, pBuM is exclusively located in the heterochromatic microchromosome of *D. mojavensis*. Future studies will be needed to address whether these transcripts participate in chromatin modulation and/or if they affect the transcription of neighboring genes, as observed for satDNA transcripts of *Drosophila* and other organisms (Menon et al. 2014; Fellicielo et al. 2015).
Figures Legends

Fig. 1: Estimated repetitive DNA abundance in three cactophilic *Drosophila* species.

Fig. 2: Schematic representation of the BEL3-DM-I transposable element present on RepBase, which is flanked by CDSTR130 satDNA arrays. Blue arrows represent the undescribed 185 bp long terminal repeat of the BEL3-DM element.

Fig. 3: FISH on polytene chromosomes of *D. buzzatii* (A) and (B) *D. seriema* using satDNA probes for *pBuM* (red) and *CDSTR198* (green) (Arrowheads indicate telomeric regions).

Fig. 4: FISH on mitotic chromosomes using satellite DNA probes. (A) *pBuM*-1a (red) and *pBuM*-1b (green) satDNA probes on *D. buzzatii*; B. *pBuM*-1a (red) and *CDSTR198* (green) probes on *D. buzzatii*; C. *CDSTR138* (red) on *D. seriema* (D) *CDSTR130* (green) and *pBuM* (red) probes on *D. mojavensis*.

Fig. 5: NJ tree containing a sample of *pBuM* repeats extracted from the sequenced genomes of *Drosophila buzzatii* (green), *D. seriema* (blue) and *D. mojavensis* (red). The tree was estimated using the T93 substitution model with 1,000 bootstrap replicas.

Fig. 6: NJ tree of *pBuM* satDNA repeats retrieved from the *D. buzzatii* assembled genome and previously described on Kuhn et al. (2003) Colored braches evidence Y chromosome specific arrays (yellow) when compared to autosomal arrays (green). The tree was estimated using the T93 substitution model with 1,000 bootstrap replicas.

Fig. 7: A-B FISH with *CDSTR130* (green) and *pBuM* (red) probes onto extended DNA fibers of *D. mojavensis*. (C) Schematic representation of *CDSTR130* and *pBuM* organization found on contigs Ctg01_2999(AAPU01002998.1) and Ctg01_4375 (AAPU01004374.1 retrieved from the *D. mojavensis* assembled genome.
Fig. 8: Transcription profile of satDNA families in *D. buzzatii* (A) and *D. mojavensis* (B) on five different developmental stages. Counts were normalized to one million reads.

Fig. 9: Representative ideogram showing the chromosomal localization of all satDNAs identified in *D. buzzatii, D. seriema* and *D. mojavensis*.

Table Legends:

Table 1. Main features of satellite DNA families present on *D. buzzatii, D. seriema* and *D. mojavensis* genomes.

Supplementary Material

Supplementary Figures Legends:

Fig. S1. Repetitive clusters (n=122) in *D. buzzatii* identified by RepeatExplorer after clusterization of 270366 reads. Together, these clusters represent 14.7% of the genome (identified by the yellow traced line). Each bar in the graphic represents a cluster of similar reads. The pBuM-1 and CDSTR198 satellite DNAs are indicated.

Fig. S2. Repetitive clusters (n=328) in *D. seriema* identified by RepeatExplorer after clusterization of 526010 reads. Together, these clusters represent 26.9% of the genome (identified by the yellow traced line). Each bar in the graphic represents a cluster of similar reads. The pBuM-2, DBC-150 and CDSTR138 satellite DNAs are indicated.

Fig. S3. Repetitive clusters (n=217) in *D. mojavensis* identified by RepeatExplorer after clusterization of 323342 reads. Together, these clusters represent 14.9% of the genome.
(identified by the yellow traced line). Each bar in the graphic represents a cluster of similar reads. The CDSTR130 and pBuM-1 satellite DNAs are indicated.

Fig. S4. satDNA consensus sequences from *D. buzzatii, D. seriema* and *D. mojavensis*.

Fig. S5. FISH on polytene chromosomes: (A) *CDSTR130* (green) and *pBuM* (red) satDNAs probes on *D. mojavensis*, and (B) *CDSTR138* satDNA probe (red) on *D. seriema*.

Supplementary Tables Legends:

Table S1. List of primers used in the satDNA families described in present study.

Table S2. Description of all clusters retrieved from 1834708 reads of *D. buzzatii* by RepeatExplorer. The satDNA families analyzed in this study are highlighted in bold red.

Table S3. Description of all clusters retrieved from 2144275 reads of *D. seriema* by RepeatExplorer. The satDNA families analyzed in this study are highlighted in bold red.

Table S4. Description of all clusters retrieved from 2174346 reads of *D. mojavensis* by RepeatExplorer. The satDNA families analyzed in this study are highlighted in bold red.

Table S5. Description of the ten most abundant clusters of the *D. melanogaster* genome identified by RepeatExplorer. The satDNA families with monomer lengths smaller than 50 bp are highlighted in bold.

Table S6. Main features of 37 *CDSTR198* arrays located on euchromatic regions and their chromosome location according to GenomeBrowser analysis.

Table S7. List of genes associated with *CDSTR198* arrays and their relative positions in relation to *CDSTR198*.
Acknowledgments

We are grateful to Dr. Alfredo Ruiz (Universitat Autònoma de Barcelona) for several insightful discussions during different stages of this work and also for sharing the RNAseq data we used. We also thank Guilherme Borges Dias (Universidade Federal de Minas Gerais) for sequencing D. seriema. We thank Prof. A. Bernardo Carvalho (Universidade Federal do Rio de Janeiro) for kindly sharing the D. mojavensis sequencing data with us. This work was supported by a grant from "Fundação de Amparo à Pesquisa do Estado de Minas Gerais" (FAPEMIG) (grant number APQ-01563-14) to G.K. LG de Lima was supported with a doctoral fellowship from CAPES. Funding for sequencing was provided by the "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior" (CAPES) - Programa de Excelência Acadêmica (PROEX) - to Programa de Pós Graduação em Genética da UFMG (process CAPES/PROEX 0529/2014). Genomic DNA quality control, library preparation and sequencing were conducted at the Laboratório de Biotecnologia e Marcadores Moleculares of the Universidade Federal de Minas Gerais, with the aid of Dr. Anderson Oliveira do Carmo, Dr. Ana Paula Vimieiro Martins and Dr. Evanguedes Kalapothakis.

References

Blattes, R., Monod, C., Susbielle, G., Cuvier, O., Wu, J., et al. 2006 Displacement of D1, HP1 and topoisomerase II from satellite heterochromatin by a specific polyamide. The EMBO journal, 25(11), 2397-2408.

Henikoff, S., Ahmad, K., and Malik, H. S. 2001 The centromere paradox: stable inheritance with rapidly evolving DNA. *Science*, 293(5532), 1098-1102.

Kuhn, G. C.S., Sene, F. M., Moreira-Filho, O., Schwarzacher, T., and Heslop-Harrison, J. S. 2008 Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the *Drosophila buzzatii* cluster. *Chromosome Research, 16*(2), 307-324.

Leung, W., Shaffer, C. D., Reed, L. K., Smith, S. T., Barshop, W., Dirkes, W., ... and Yuan, H. 2015 Drosophila Muller F elements maintain a distinct set of genomic properties over 40 million years of evolution. *G3: Genes| Genomes| Genetics*, 5(5), 719-740.

Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. *Proceedings of the National Academy of Sciences, 112*(44), 13633-13638.

Nei, M. 1987 *Molecular evolutionary genetics*. Columbia university press.

Shiels, C., Coutelle, C., and Huxley, C. 1997 Contiguous arrays of satellites 1, 3, and β form a 1.5-Mb domain on chromosome 22p. *Genomics*, 44(1), 35-44.

Villasante, A., Abad, J. P., Planelló, R., Méndez-Lago, M., Celniker, S. E., and de Pablos, B. 2007 Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. *Genome research, 17*(12), 1909-1918.

Fig. 2: Schematic representation of the BEL3-DM-I transposable element present on RepBase, which is flanked by CDSTR130 satDNA arrays. Blue arrows represent the undescribed 185 bp long terminal repeat of the BEL3-DM element.
Fig. 3: FISH on polytene chromosomes of D. buzzatii (A) and (B) D. seriema using satDNA probes for pBuM (red) and CDSTR198 (green) (Arrowheads indicate telomeric regions).
Fig. 4: FISH on mitotic chromosomes using satellite DNA probes. (A) pBuM-1a (red) and pBuM-1b (green) satDNA probes on D. buzzatii; B. pBuM-1a (red) and CDSTR198 (green) probes on D. buzzatii; C. CDSTR138 (red) on D. seriema (D) CDSTR130 (green) and pBuM (red) probes on D. mojavensis.
Fig. 5: NJ tree containing a sample of pBuM repeats extracted from the sequenced genomes of *Drosophila buzzatii* (green), *D. seriema* (blue) and *D. mojavensis* (red). The tree was estimated using the T93 substitution model with 1,000 bootstrap replicas.
Fig. 7: A-B FISH with CDSTR130 (green) and pBuM (red) probes onto extended DNA fibers of D. mojavensis. (C) Schematic representation of CDSTR130 and pBuM organization found on contigs Ctg01_2999 (AAPU01002998.1) and Ctg01_4375 (AAPU01004374.1) retrieved from the D. mojavensis assembled genome.
Fig. 9: Representative ideogram showing the chromosomal localization of all satDNAs identified in *D. buzzatii*, *D. seriema* and *D. mojavensis*.
Table 1. Main features of satellite DNA families present on *D. buzzatii*, *D. seriema* and *D. mojavensis* genomes.

<table>
<thead>
<tr>
<th>satDNA family</th>
<th>Monomer Size</th>
<th>GC Content (%)</th>
<th>Copy number (analyzed)</th>
<th>Genomic contribution (%)</th>
<th>Variability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. buzzatii</td>
<td>pBuM</td>
<td>189</td>
<td>29</td>
<td>379</td>
<td>1.71</td>
</tr>
<tr>
<td></td>
<td>CDSTR198</td>
<td>198</td>
<td>34</td>
<td>79</td>
<td>0.23</td>
</tr>
<tr>
<td>D. seriema</td>
<td>pBuM-2</td>
<td>370</td>
<td>23.9</td>
<td>30^a^</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>DBC-150</td>
<td>150</td>
<td>55.9</td>
<td>5^b^</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>CDSTR138</td>
<td>138</td>
<td>31.2</td>
<td>386</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>CDSTR198</td>
<td>198</td>
<td>34.8</td>
<td>67</td>
<td>0.02</td>
</tr>
<tr>
<td>D. mojavensis</td>
<td>CDSTR130</td>
<td>130</td>
<td>26.2</td>
<td>929</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>pBuM</td>
<td>185</td>
<td>26.5</td>
<td>600</td>
<td>0.86</td>
</tr>
</tbody>
</table>

^a^ Data from Kuhn et al. (2008).

^b^ Data from Kuhn et al. (2007).