A dynamic mobile DNA family in the yeast mitochondrial genome

Baojun Wu and Weilong Hao*

Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA

Data deposition: GenBank accession numbers KP712778-KP712805
Short title: Yeast mitochondrial transposable element

Key Words:
GC cluster, Horizontal transfer, Mitochondrial genome, Transposable element, Palindromic sequence

*Corresponding author:
Weilong Hao, Ph.D
Department of Biological Sciences
5047 Gullen Mall
Wayne State University
Detroit, MI 48202
Phone (313) 577-6450
Fax (313) 577-6891
Email: haow@wayne.edu
Abstract

Transposable elements (TEs) are an important factor shaping eukaryotic genomes. Although a significant body of research has been conducted on the abundance of TEs in nuclear genomes, TEs in mitochondrial genomes remain elusive. In this study, we successfully assembled 28 complete yeast mitochondrial genomes and took advantage of the power of population genomics to determine mobile DNAs and their propensity. We have observed compelling evidence of GC clusters propagating within the mitochondrial genome and being horizontally transferred between species. These mitochondrial TEs experience rapid diversification by nucleotide substitution, and more importantly, undergo dynamic merger and shuffling to form new TEs. Given the hyper mobile and transformable nature of mitochondrial TEs, our findings open the door to a deeper understanding of eukaryotic mitochondrial genome evolution and the origin of nonautonomous TEs.
Introduction

Transposable elements (TEs) are widely distributed among eukaryotic nuclear genomes and are a major contributor to genomic variation (Collier and Largaespada 2007; Deragon et al. 2008). In contrast to our detailed understanding of nuclear TEs, TEs in the organelle genomes are less well characterized. Several TE-like sequences have been reported in plant and yeast mitochondrial (mt)DNA, however, all these TE-like sequences are fragments of TEs from the nuclear genome that have arisen from nuclear-derived insertions (Knoop et al. 1996; Alverson et al. 2010; Rodriguez-Moreno et al. 2011; Mularoni et al. 2012; Islam et al. 2013).

Another kind of mitochondrial TE-like elements are palindromic GC clusters, which are characterized by their relatively high GC content and palindromic structure (Yin et al. 1981; de Zamaroczy and Bernardi 1986; Weiller et al. 1989; Paquin et al. 2000; Smith and Lee 2008; Erpenbeck et al. 2009; Smith and Lee 2009; Lavrov 2010; Lang et al. 2014). These GC clusters have been proposed to be TE-like based primarily on their sporadic distribution (Weiller et al. 1989; Nakazono et al. 1994; Koll et al. 1996; Paquin et al. 2000; Lavrov 2010; Lang et al. 2014). Consistent with the hypothesis of GC clusters being TE-like, other marks of TEs including copy number variation and putative target-site duplication have been observed in GC clusters (Weiller et al. 1989; Lang et al. 2014).

Although mobility of GC clusters has been suggested in previous studies, there is a lack of compelling evidence convincingly demonstrating that GC clusters are bona fide mitochondrial TEs. The evolutionary fate of GC clusters is ultimately determined by their intraspecific variation and population genetics processes, and the fast growing population
genomics data emerge as excellent resources for a better understanding of the nature of GC clusters. In this study, we assembled 28 complete mitochondrial genomes from *Saccharomyces cerevisiae* and *S. paradoxus* and compared their GC clusters together with five other published *S. cerevisiae* and *S. paradoxus* mitochondrial genomes. Our results reveal that one 42-nucleotide palindromic GC cluster (GC42) is of rapid proliferation in *S. cerevisiae*, and involved in homologous-recombination-mediated genetic exchange between *S. cerevisiae* and *S. paradoxus*. GC42 and other GC clusters have highly dynamic evolutionary trajectories, featuring rapid nucleotide substitutions, dynamic merger and shuffling of GC-cluster units. Possible transposition mechanisms and evolutionary/functional consequences of GC clusters are discussed.

Materials and methods

Strains and mitochondrial genome assembly

The raw Illumina sequencing reads from *S. cerevisiae* and *S. paradoxus* were obtained from the NCBI SRA database (Bergstrom et al. 2014). The reads were assembled using a combination of softwares SOAPdenovo (Luo et al. 2012), SPAdes (Bankevich et al. 2012), Velvet (Zerbino and Birney 2008) and Consed (Gordon and Green 2013). Five different K-mers (21, 33, 55, 77, and 89) were used during the assembly processes and default settings were chosen for all remaining parameters. The best-assembled contigs were used to fill gaps using SSPACE (Boetzer et al. 2011) and GapFiller (Boetzer and Pirovano 2012). The assembled genomes were evaluated by mapping back the raw reads using BWA (Li and Durbin 2009). We have successfully completed mitochondrial genomes for 14 *S. cerevisiae* strains and 14 *S. paradoxus* strains (GenBank accession numbers from
The complete mitochondrial genomes of *S. cerevisiae* S288c, YJM789, YJM993, No7 and *S. paradoxus* CBS432 were obtained from the GenBank database. All 33 complete mitochondrial genomes are subject to further analysis.

Detection and analysis of GC cluster repeats

Dispersed repeats in the *S. cerevisiae* S288c mitochondrial genome were identified using RepeatFinder implemented in the UGENE package (Okonechnikov *et al.* 2012) with a minimum length of 30 bp. Sequences with GC content above 30% were grouped by BLASTClust (Altschul *et al.* 1997) with 70% length coverage and 100% sequence identity. The flanking sequences were manually inspected to define GC cluster boundaries. The four most abundant GC-rich dispersed repeats in the *S. cerevisiae* S288c genome are shown in Table 1. For convenience, the most abundant GC cluster was named after its length, i.e., GC42 is a GC cluster of 42 bp in length. The secondary structures of GC clusters were predicted by Mfold 4.6 with default parameters (Zuker 2003). The nucleotide variation of GC42 copies was visualized using WebLogo (Crooks *et al.* 2004). To identify homologs of GC clusters, BLASTN searches (Camacho *et al.* 2009) were performed and significant matches were required to have 90% sequence identity and 95% length coverage.

Phylogenetic and phylogenomic analysis

After mining the nuclear genomic data (Liti *et al.* 2009), 630 nuclear-encoded single-copy genes were universally present in all the 18 *S. cerevisiae* and 15 *S. paradoxus* strains, and all these 630 genes were included in further phylogenomic analysis. Each gene was aligned individually using MUSCLE (Edgar 2004). The concatenated sequences of all gene
alignments were used to reconstruct the phylogenetic relationship of these strains.

Phylogenetic trees were constructed using the RAxML program (Stamatakis 2006) under a GTR + Γ substitution model, and 100 bootstrap iterations were performed. The phylogenetic relationship was constructed for homologous flanking regions using 100 nt upstream and 100 nt downstream of the target GC42 homologous position. In *S. paradoxus*, the same homologous position can have standing-alone GC42 in some strains, and merged GC cluster in other strains. We have manually inspected the sequence alignment of the homologous flanking ±100bp regions.

Transcriptome data analysis and GC42 expression

The pair-ended (100PE) raw RNA-seq data of two strains, GCDA5 and GCDA8, isogenic to wild-type *S. cerevisiae* S288c (Turk *et al.* 2013) were obtained from the NCBI SRA database (SRR900186 and SRR900220 for GCDA8; SRR900222 and SRR900223 for GCDA5). This dataset is ideal for the examination of GC42 expression, as the sequencing libraries were prepared with no DSN treatment, no polyA selection, no ribosomal or tRNA subtraction, and no size selection. This study is not concerned about exon/intron junctions that are only present in the *cox1*, *cob*, and 21S rRNA genes, and BWA (Li and Durbin 2009) has been shown to be superior to other mapping programs on RNA-seq reads of 100 bp in length (Lindner and Friedel 2012). We chose BWA with default settings to directly map RNA-seq reads onto the reference mitochondrial genome. The expression levels for individual GC42 copies and intron-lacking protein coding genes were calculated as RPKM with Artemis v16.0.0 (Carver *et al.* 2012). The RPKMs were normalized to have identical
atp6 RPKMs (i.e., \(\sqrt{xy} \), \(x \) is the atp6 RPKM in GCDA8, \(y \) is the atp6 RPKM in GCDA5)

between the GCDA5 and GCDA8 strains.

Quantification of the GC42 turnover rates

The distribution of GC42 was mapped on the phylogenetic tree (Supplementary Figure S2).

Gain and loss at homologous sites were modeled as a two-state continuous-time Markov process, with states 0 (absence) and 1 (presence) on a phylogeny using the tree branch length as a relative time scale in the R package DiscML (Kim and Hao 2014). The turnover rate is expressed as the number of gains/losses per site per nucleotide substitution (Hao and Golding 2006; Wu and Hao 2014). The GC42 turnover rates were estimated using, 1) the simplistic (one-parameter) model by constraining the gain and loss rates to be the same, 2) the two-parameter model separating the gain and loss rates. The ancestral state for each GC42 homologous position was estimated using BayesTraits (Pagel et al. 2004).

The polymorphic level of GC42 presence/absence was compared against those in five nuclear-encoded transposons (Ty1-Ty5) in *S. cerevisiae*. The phylogenetic distribution of each Ty transposon was obtained from (Carr et al. 2012). The pairwise difference was calculated as \(\frac{\# \text{ different}}{\# \text{ identical} + \# \text{ different}} \), sites with missing information were excluded from each pairwise comparison. The choice of performing pairwise comparison was because that the Ty presence/absence data, unlike the GC42 distribution data, contained missing information for most homologous positions and were unsuitable for reliable turnover rate estimation.

Results

Rapid turnover of GC42
TEs are often of a high copy number in the genome. We initiated a search for dispersed repeats with high GC content in the reference *S. cerevisiae* S288c mitochondrial genome. The four most abundant GC clusters range from 5 to 25 identical copies in the *S. cerevisiae* S288c mitochondrial genome (Table 1). These identified GC clusters are all flanked by short direct repeats (AG or ACT) in a manner similar to target-site duplication in class II TEs (DNA transposons). To obtain detailed picture of the mobility of GC clusters, the most redundant 42-nucleotide GC cluster (GC42) was chosen for further comprehensive analysis. Given the fact that TEs are subject to degeneration (Carr *et al.* 2012; Bleykasten-Grosshans *et al.* 2013), the search criterion for GC-cluster homologs was relaxed to 90% sequence identity and 95% match in length to the query (see Material and Methods).

In *S. cerevisiae*, we identified 89 GC42 positions, with five present in the *cob* introns, two in the *cox1* introns, and the remaining 82 GC42 positions at intergenic regions. Consistent with previous studies (Weiller *et al.* 1989), GC42 is sporadically distributed among the conspecific strains in *S. cerevisiae* (Figure 1). To further demonstrate whether the sporadic GC42 distribution resulted from multiple independent losses or from GC42's own mobility, we sought a quantitative approach to measure the rates of GC42 gain and loss. If the sporadic GC42 distribution resulted from multiple independent losses, one should expect a negligibly low rate of GC42 gain but a substantially high rate of GC42 loss. If the sporadic GC42 distribution resulted from GC42's own mobility, both the rates of GC42 gain and loss are expected to be high. The overall rate (± SE) of GC42 gain in *S. cerevisiae* was estimated as 135.2±8.0 gains per site per nucleotide substitution (Table 2,
see Material and Methods for detailed explanation). That is, that GC42 gain takes place at a rate about two orders of magnitude higher than nucleotide substitution. The rate of GC42 loss was estimated as 235.2±14.0 (Table 2). The high rates of GC42 turnover support the hypothesis that GC42 is of high mobility. Furthermore, GC42 appears to be more presence/absence polymorphic than all five nuclear-encoded Ty transposons (Ty1-Ty5) in *S. cerevisiae* (Supplementary Figure S1), which is consistent with high GC42 mobility. Unfortunately, reliable turnover rate estimation could not be performed on the Ty data, as they contain missing information at most identified Ty positions due to the relatively low sequence coverage in the nuclear genomes.

A notable bias towards GC42 loss was observed in *S. cerevisiae* (Table 2), which can be explained by the deleterious nature of GC42 as a type of TEs and perhaps transient fate at many mitochondrial genomic locations. Under such circumstances, one would expect higher GC42 turnover rates and less bias towards loss among more closely related genomes due to recent evolutionary separation, which does not yet provide sufficient time to purge deleterious genetic elements. Consistently, when estimation was performed within more closely related clades (i.e., clade A and clade B in Supplementary Figure S2), the turnover rates are indeed higher than those estimated for the entire species and there is an insignificant trend towards GC42 gain, at minimum, no more bias towards GC42 loss (Table 2). Furthermore, the ancestral state at each GC42 homologous position was estimated (Figure 1). Among the 89 GC42 positions, 46 positions favor ancestral 'presence' and 43 positions favor ancestral 'absence'. The ancestral absence of GC42 in these positions supports a significant number of GC42 gains during mitochondrial genome
evolution. Thus, the sporadic distribution of GC42 homologs is likely due to their own
dynamic lifecycle as TEs.

GC42 is under functional constraint

TEs can move from one genomic location to another faster than the genome can replicate. The reproductive success of TEs will depend on their ability to rapidly proliferate within the genome. To maintain their functional integrity, the TE sequences are expected to be under selection to purge mutations disrupting TE activity. GC clusters are known to form palindromic structures (Figure 2A) (de Zamaroczy and Bernardi 1986; Lang et al. 2014) and we sought whether their palindromic structures are under functional constraint. If GC42 is under no functional constraint, it would be subject to random substitutions along the 42 nucleotides. Among all the GC42 homologs in *S. cerevisiae*, 367 nucleotide changes (by comparing to the consensus sequence in Figure 2B) are located at 12 sites in the loops regions, while 174 nucleotide changes are at the remaining 30 nucleotide-sites \((P=8.04\times10^{-7}, \text{Fisher's exact test}) \). The significantly high proportion of nucleotide changes in the loop regions suggests that the secondary hairpin structure of GC42 is of functional importance. Indeed, the two most abundant GC42 homologs distinct from the consensus \((36^G, 10^C36^G) \) only have nucleotide changes in the loop regions (Figure 2C). These substitution-containing homologs of GC42 also show copy number variation among strains following a sporadic distribution (Figure 2C). The constraint on the secondary structure suggests that the palindromic structure is functionally important for GC42.

The average nucleotide diversity was measured separately for the loop and stem regions of GC42, and compared against the average pairwise synonymous substitution
rates in seven (all but the var gene) protein genes (Supplementary Figure S3). Here, we used the average pairwise synonymous substitution rates as an approximate guide for genome wide mutation rate due to the difficulty to accurately align the entire sequences of extremely AT-rich mitochondrial genomes. The average nucleotide diversity of the GC42 loop regions is higher than the median pairwise synonymous substitution rates of most protein coding genes. This could be explained by 1) non-allelic homologous recombination among the GC42 sequences, 2) purifying selection acting on gene synonymous sites (Lawrie et al. 2013), and/or 3) targeted copy correction by gene conversion on protein coding genes (Khakhlova and Bock 2006; Christensen 2013). Importantly, the diversity of the GC42 stem regions is much lower than the pairwise synonymous substitution rates of most protein coding genes. Conservatively speaking, the substitution rate in the GC42 stem regions has been significantly reduced from the genome wide mutation rate, thus GC42 is believed to be under functional constraint.

Sequence transposition in one genome leads to insertions/deletions (indels) in a two-genome comparison. Recent TE activity can generate genomic indels, which in turn serve as indicators for recent TE activity (Mills et al. 2007). In Figure 1, some closely related genomes show very different GC42 distribution, suggesting that GC42 has recently been, and/or still is, active. In five pairs of closely related genomes (colored in Supplementary Figure S2), we have identified sequences (indels) present in one genome but not the other, and found that the density of GC42 (units/kb) is significantly higher in these indels than in the whole genomes (Figure 2D). The high GC42 density in the indels of closely related genome pairs is likely contributed by the recent TE activity of GC42.
Nucleotide substitutions immediately flanking GC42 were observed (Figure 3). Importantly, the variation in these nucleotide sites is associated with the presence or absence of GC42, but not necessarily always with the phylogenetic relationship. These findings suggest that the variable nucleotides immediately flanking GC42 are likely the co-conversion tract of GC42 insertion, a common sequence mark of insertion for many mobile sequences, e.g., group I and group II introns (Lambowitz and Belfort 1993; Moran et al. 1995; Sanchez-Puerta et al. 2008). The presence of putative GC42 co-conversion tract suggests active mobility of GC42 at some point of evolution.

Exchange of GC42 between species

Many TE families are known to have horizontal transmission for their long-term maintenance during evolution (Schaack et al. 2010; Wallau et al. 2012). To explore whether GC42 is involved in horizontal transfer and proliferation in other species (Figure 4A and Supplementary Figure S2), we searched GC42 homologs in 15 *S. paradoxus* strains. GC42 homologs in two *S. paradoxus* strains (N44 and IFO1804) show 100% identity with the GC42 at the homologous position in *S. cerevisiae* S288c (also the most abundant GC42 type shown in Table 1), and the flanking regions in these two *S. paradoxus* strains show much closer relationships with *S. cerevisiae* than any other *S. paradoxus* strains (Figure 4B). These suggest that the transfer of GC42 into *S. paradoxus* N44 and IFO1804 from *S. cerevisiae* was mediated by homologous recombination. Moreover, *S. paradoxus* N44 and IFO1804 bear a second GC42 homolog of 100% identity with the first GC42 copy. In a BLASTN search using the flanking region of the second GC42 as a query, significant hits were found in only two other *S. paradoxus* strains,
CBS432 and Y7; but both strains lack GC42 at this homologous position (Figure 4C).

Since no other GC42 homologs in S. paradoxus than these two copies in N44 and IFO180 are 100% identical with any GC42 homologs in S. cerevisiae, it is thus most likely that the second GC42 copy in S. paradoxus N44 and IFO1804 was inserted recently and perhaps due to proliferation after the transfer of the first GC42 from S. cerevisiae.

It is also evident that the GC42 flanking regions in two S. cerevisiae strains (L1528 and DBVPG6765) are more closely related to S. paradoxus than any other S. cerevisiae strains (Figure 4B). The GC42 homologs in S. cerevisiae L1528 and DBVPG6765 share higher similarity with the consensus GC42 sequence in S. paradoxus (98% identity) than that in S. cerevisiae (88.1% identity). These results suggest that GC42 exchange also takes place from S. paradoxus to S. cerevisiae via homologous recombination at the flanking regions. Similarly, GC42 is sporadically distributed in S. paradoxus strains, ranging from 2 to 11 copies. GC42 homologs in S. paradoxus also show a higher proportion of nucleotide changes in the loop regions than in the stem regions. Among the 113 GC42 homologs in S. paradoxus, 48 nucleotide changes are located at 12 sites in the loop regions, while 2 nucleotide changes are at the remaining 30 nucleotide-sites ($P=2.42\times10^{-12}$, Fisher's exact test). It is worth to note that the ratio of nucleotide changes in the loops over in the stems (48:2) in S. paradoxus is higher than that (367:174) in S. cerevisiae ($P=3.27\times10^{-06}$, Fisher's exact test). These results could be explained by the greater diversity in loop regions among the S. paradoxus strains than among the S. cerevisiae, and a higher fraction of nucleotide changes in the stems have been purged in S. paradoxus than in S. cerevisiae. Despite its relative low copy number in S. paradoxus,
GC42 should still be considered mobile in *S. paradoxus*. In fact, the estimated turnover rates in *S. paradoxus* and in clade B are higher than those in *S. cerevisiae* and in clade A (Table 2). Among the 15 GC42 homologous positions in *S. paradoxus*, four positions were inferred to favor an ancestral state 'absence' (Figure 5). Furthermore, GC42 exchange can take place at homologous positions between different genomes, which would not be detectable in the analysis of turnover rates.

GC cluster merger and the birth of new GC clusters

In *S. paradoxus*, GC42 can be found in two forms, stand-alone and merged with another GC cluster (Figure 5A), both of which show copy number variation among different strains (Figure 5B). The stand-alone and merger forms can be found in different strains at the same homologous site, determined by their homologous flanking regions (Figure 5B). We then sought to address whether the merger of GC clusters is a general phenomenon during the evolution of GC clusters. One 18-nucleotide GC cluster immediately flanked by AT-rich sequences was found to be identical with the 3'-terminus of GC42 (Figure 5C).

This GC18 sequence was found in 11 of the 18 studied *S. cerevisiae* strains and of copy number variation, but absent from any *S. paradoxus* strains (Figure 5C). Like intact GC42, GC18 also has putative co-conversion tracts. In one GC42 homologous position (Figure 3), all the T nucleotide substitutions are associated with the presence of GC18. These results suggest that GC18 might be a smaller mobile unit than GC42 and raise the possibility that GC42 itself could have resulted from merger of two smaller GC clusters (Figure 5D). We further noticed that the second and third most abundant GC clusters in *S. cerevisiae* S288c share an identical 5'-terminus (Table 1). Using the 5'-terminus as a query, we have
identified 403 GC-rich sequences in the 18 studied S. cerevisiae strains, all of which share the first 13 nucleotides 5'-ACTCCTTCGGGGT-3 but might have different downstream adjacent sequences (Figure 6). These sequences are of 76 distinct sequence types with various lengths. Thus, it seems to be common that GC clusters undergo active merger and shuffling during yeast mitochondrial genome evolution.

Expression of the GC42 sequences

Many GC42 sequences are transcribed into RNAs but their express levels vary substantially (Figure 7). 12 GC42 homologs show higher expression levels than the rps3 (var) gene, and two GC42 homologs show high expression levels comparable to atp8 and atp6. We further investigated the expression level of the 12 most highly expressed GC42 sequences and their flanking sequences (upstream 40 nucleotides and downstream 40 nucleotides). We have observed that seven GC42 sequences are transcribed at levels similar to their flanking sequences (e.g., in Supplementary Figures S4 A, D, E, G, H, J and K) and five GC42 sequences are transcribed at higher levels than their flanking sequences (e.g., in Supplementary Figures S4 B, C, F, I and L). These results suggest that at least some GC42 sequences are independently transcribed in the host.

Discussion

The origin and evolutionary history of GC-rich TEs

During evolution, the GC-rich TEs both accumulate nucleotide substitutions and undergo unit merging and shuffling. Nucleotide changes in S. cerevisiae and S. paradoxus strains all support a higher proportion of nucleotide changes in the loop regions than in the stem regions. This is also supported by the interspecific difference of GC42 homologs between S. cerevisiae and S. paradoxus. For instance, the GC42 consensus sequence in S.
cerevisiae (Figure 2A) differs by four nucleotides (positions 16, 17, 24, 37) from that in S. paradoxus (Supplementary Figure S5) and all four nucleotides are in the loop regions (P=0.011, Fisher's exact test). GC42 undergoes dynamic transformation, presumably derived from merger of smaller GC clusters as observed in S. cerevisiae and further merging into bigger GC clusters as observed in S. paradoxus (Figure 5). GC clusters can potentially undergo merger and separation (fusion and fission) in a bidirectional manner, but the abundance of each GC cluster unit depends on its own mobile activity and functional constraint under selection.

Our study observed exchange of GC42 between S. cerevisiae and S. paradoxus via homologous recombination at the conserved flanking regions, which was recently recognized as an often overlooked mechanism mediating horizontal transfer (Polz et al. 2013). Similarly, mitochondrial introns have been previously documented to be involved in horizontal transfer mediated by homologous recombination at the conserved flanking regions (Hepburn et al. 2012; Wu and Hao 2014). Horizontal transfer of another GC cluster has been documented, which involves in the transfer of a 48-nucleotide GC cluster within the rps3 (var) gene between S. cerevisiae and Kluyveromyces lactis (Lang et al. 2014).

Given the similar dynamics of GC clusters observed in S. cerevisiae and S. paradoxus, we propose that after horizontal transfer of GC-rich TEs, these TEs would experience the similar evolutionary dynamics (nucleotide substitutions, merging, and shuffling) as in the previous host (illustrated in Figure 8). This process shares all the important features documented in animal TEs, e.g., rapid mutation accumulation, diversification and proliferation in host and possible horizontal transfer into new host (Schaack et al. 2010).
Amplification mechanism of GC-rich TEs

GC clusters, including GC42, bear putative target-sites duplication (Weiller et al. 1989; Lang et al. 2014) (Figure 2B and Table 1), a key feature in class II TEs (DNA transposons).

It has been proposed that endonucleases encoded in mitochondrial introns may facilitate the mobility of GC clusters as DNA transposons (Lang et al. 2014). However, target-site duplication in class II TEs is involved in a cut-and-paste transposition mechanism, which does not often lead to substantial increase in copy numbers. There is one possibility for a cut-and-paste transposition mechanism to increase copy numbers. It would require the combination of 1) stable heteroplasmic mtDNAs containing different GC42 patterns, 2) relatively efficient mtDNA recombination and segregation, and 3) biased retention of high GC42-copy mtDNA genotypes. Among these three requisites, only mtDNA recombination is commonly recognized (Shannon et al. 1972; Dujon et al. 1974; Fritsch et al. 2014). The heteroplasmic state in *S. cerevisiae* is generally believed to be transient and last no more than 20 mitotic cell divisions (vegetative segregation) (Birky 2001), and there has been no evidence supporting GC-cluster rich mtDNA genotypes being preferentially retained from heteroplasmic cells. Similar challenge has been documented in a previous study on the copy number variation of nuclear MITEs (miniature inverted-repeat transposable elements) (Fattash et al. 2013). To obtain a more sophisticated answer on the transposition and proliferation of GC-rich TEs, we sought to access the possible contribution of the cut-and-paste mechanism in GC-rich TEs. If cut-and-paste were the only transposition mechanism of GC42, we would expect all GC42-absence positions to have either one single set of target site nucleotides (AG) (presumably never inserted or perfectly cut out) or GC42
fragment with two sets of target site nucleotides (AG) as footprint. Among the 89 homologous positions, GC42-absence sites in 25 homologous positions only have a single set of target site nucleotides, and 5 positions have footprint. All these findings suggest that cut-and-paste is unlikely the sole mechanism of GC42 transposition.

We then investigated the possibility of GC-rich TEs being involved in RNA-mediated transposition (also known as copy-and-paste). The expression of GC42 would be an excellent pre-condition for reverse transcription (Figure 7). Furthermore, yeast mitochondrial genomes contain several functional intron ORFs, which encode endonucleases and reverse transcriptases involved in intron-mobility (Eskes et al. 2000; Lang et al. 2014). The presence of functional reverse transcriptase, in principle, can facilitate RNA-mediated retrotransposition of GC-rich TEs. We suspect that the rapid GC42 proliferation is, in part, due to RNA-mediated retrotransposition (copy-and-paste). However, additional experimental evidence is required to conclusively determine the proliferation mechanisms. Previous studies on mitochondrial intron transposition and retrotransposition have documented the co-conversion of flanking exon sequences as the result of mobile intron insertion mediated by intron-encoded enzymes (Lambowitz and Belfort 1993; Moran et al. 1995; Sanchez-Puerta et al. 2008). The putative co-conversion tracts are likely the footprints of GC cluster insertions (Figure 3).

Merger and shuffling of palindromic clusters: a potential source of evolutionary novelty

Palindromic GC clusters were first discovered about 40 years ago (Bernardi 1976), but the origin and evolution of GC clusters are still poorly understood. Our findings, for the first
time, show that GC clusters undergo dynamic merger and shuffling (Figure 5). It is reasonable to believe that GC clusters have variable mobile activities because of their different secondary structures. The highly dynamic merger and shuffling processes will alter the secondary structure and mobile activity of GC-rich TEs, and ultimately change their abundance at both the genomic and population levels.

The merger of palindromic sequences has been proposed as an important mechanism to create functional and structurally complex RNAs. For instance, nuclear tRNA halves can form hairpin structure and be ligated into chimeric tRNA with cloverleaf structure during evolution (Zuo et al. 2013). That is that, merger and shuffling of tRNA fragments created modern tRNAs. Modern tRNAs could have been inserted into the genome via retrotransposition (Zuo et al. 2013), which is likely also crucial for the mobility of GC clusters. Many hairpin-structured RNAs have been previously shown to bear ribozyme activity, which catalyzes self-cleavage and ligation reactions (Gwiazda et al. 2012; Muller et al. 2012). The potential ribozyme activity of palindromic sequences could play an important role in initiating and promoting their own merger and shuffling. We tend to believe that the shuffling of hairpin-forming sequences is likely associated with RNA-mediated ligation and retrotransposition.

Evolution of GC clusters and mitochondrial genome size

Most GC clusters, including GC42, are located in intergenic regions, whose size is often strongly associated with mitochondrial genome size (Bouchier et al. 2009). GC clusters are short in length, thus their direct sequence-length contribution to mitochondrial genome size is minimum. However, GC clusters have been suggested as mtDNA recombination hotspots (Dieckmann and Gandy 1987), and GC-cluster-mediated gene conversion can
insert or delete large genomic fragments, which ultimately lead to substantial alteration of genome size. GC clusters have also been proposed to play a role in increasing mitochondrial genome size by inducing long AT-rich stretches (Bouchier et al. 2009).

Furthermore, the abundance of TE sequences has been shown as the result of nonadaptive processes such as mutation and genetic drift during the evolution of genome size (Lynch and Conery 2003; Lynch et al. 2006). The nonadaptive evolutionary theory (Lynch and Conery 2003; Lynch et al. 2006) would predict GC clusters, as one type of TE sequences, to be more abundant in mitochondrial genomes under stronger genetic drift. Our findings suggest that the merger and shuffling processes can change the mobile activity of GC clusters, which will determine the abundance of GC clusters, and ultimately influence mitochondrial genome size evolution. As more abundant population genomics data become available from a broad spectrum of species, the above hypotheses can be tested in a more rigorous and sophisticated manner.

Acknowledgments

The authors would like to thank Dr. Aimée Dudley and three anonymous reviewers for their helpful comments. The authors are grateful for the grid computing service from Computing & Information Technology of Wayne State University. This work was supported by funds from Wayne State University to W.H.
References

Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., 1997 Gapped BLAST and
3389-3402.

Alverson, A. J., X. Wei, D. W. Rice, D. B. Stern, K. Barry et al., 2010 Insights into the evolution of
mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita

Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin et al., 2012 SPAdes: a new genome
assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455-
477.

Bergström, A., J. T. Simpson, F. Salinas, B. Barre, L. Parts et al., 2014 A high-definition view of

Birky, C. W., Jr., 2001 The inheritance of genes in mitochondria and chloroplasts: laws,

Bleykasten-Grosshans, C., A. Friedrich and J. Schacherer, 2013 Genome-wide analysis of
intraspecific transposon diversity in yeast. BMC Genomics 14: 399.

Boetzer, M., C. V. Henkel, H. J. Jansen, D. Butler and W. Pirovano, 2011 Scaffolding pre-

13: R56.

Bouchier, C., L. Ma, S. Creno, B. Dujon and C. Fairhead, 2009 Complete mitochondrial genome
sequences of three Nakaseomyces species reveal invasion by palindromic GC clusters and
considerable size expansion. FEMS Yeast Res 9: 1283-1292.

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., 2009 BLAST+: architecture
and applications. BMC Bioinformatics 10: 421.

Carr, M., D. Bensasson and C. M. Bergman, 2012 Evolutionary genomics of transposable

Carver, T., S. R. Harris, M. Berriman, J. Parkhill and J. A. McQuillan, 2012 Artemis: an integrated
platform for visualization and analysis of high-throughput sequence-based experimental

Christensen, A. C., 2013 Plant mitochondrial genome evolution can be explained by DNA repair

Collier, L. S., and D. A. Largaespada, 2007 Transposable elements and the dynamic somatic

de Zamaroczy, M., and G. Bernardi, 1986 The GC clusters of the mitochondrial genome of yeast

Dyn 4: 69-82.

Dieckmann, C. L., and B. Gandy, 1987 Preferential recombination between GC clusters in yeast
mitochondrial DNA. EMBO J 6: 4197-4203.

Dujon, B., P. P. Slonimski and L. Weill, 1974 Mitochondrial genetics IX: A model for recombination
and segregation of mitochondrial genomes in saccharomyces cerevisiae. Genetics 78: 415-
437.

Rodriguez-Moreno, L., V. M. Gonzalez, A. Benjak, M. C. Marti, P. Puigdomenech et al., 2011 Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genomics 12: 424.

Wu, B., and W. Hao, 2014 Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns. G3 (Bethesda) 4: 605-612.

Table 1. The four most abundant dispersed repeats and number of identical copies in the *Saccharomyces cerevisiae* reference genome S288c.

<table>
<thead>
<tr>
<th>Length</th>
<th>Sequences</th>
<th>Copies</th>
<th>GC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 nt</td>
<td>AGTTCCGGGGCCCGCCACGGGAGCCGGAACCACCGAAGGAG</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>38 nt</td>
<td>ACTCCTTCGGGGTCCGCCCGGCGGGGCGGGGCGGGGACT</td>
<td>7</td>
<td>85.7</td>
</tr>
<tr>
<td>32 nt</td>
<td>ACTCCTTCGGGGTCCCGCGCCCGGGGCGGGGACT</td>
<td>6</td>
<td>82.8</td>
</tr>
<tr>
<td>42 nt*</td>
<td>AGTTCCGGGGCCCGCCACGGGAGCCGGAACCACCGAAGGAG</td>
<td>5</td>
<td>77.5</td>
</tr>
</tbody>
</table>

*The fourth most abundant repeat differs by a single nucleotide (position 36, and in bold) from the top repeat sequence.

Table 2. GC42 turnover rates (± standard error) estimated for different phylogenetic groups in *S. cerevisiae* and *S. paradoxus*.

<table>
<thead>
<tr>
<th>Phylogenetic groups</th>
<th>One rate parameter</th>
<th>Two rate parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(µ)^a</td>
<td>LnL</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>165.1±9.8</td>
<td>-749.2</td>
</tr>
<tr>
<td>Clade A* in S. cerevisiae</td>
<td>327.4±26.2</td>
<td>-415.6</td>
</tr>
<tr>
<td>S. paradoxus</td>
<td>489.3±64.9</td>
<td>-150.0</td>
</tr>
<tr>
<td>Clade B* in S. paradoxus</td>
<td>977.9±152.2</td>
<td>-97.5</td>
</tr>
</tbody>
</table>

* The clades are per supplemental Figure S1.
Figures

Figure 1. Distribution of GC42 homologs among 18 *S. cerevisiae* strains. For each homologous position, the likely ancestral state was estimated and shown in a pie chart. The pie charts on the top row favor an ancestral state of absence; while the pie charts on the second row favor an ancestral state of presence. Five closely related pairs of genomes were subject to detailed analysis of GC42 density in Figure 2, each pair is shown in a distinct color. The arrow refers to a GC42 homologous position that is shared between *S. cerevisiae* and *S. paradoxus*, and involved in phylogenetic analysis for horizontal transfer in Figure 4.
Figure 2. Characteristics of GC42 sequences in *S. cerevisiae*. A) Predicted secondary structure of GC42 based on the consensus sequence. The nucleotides in loop regions are in red. B) Sequence logo for all GC42 homologous sequences. The nucleotides in loop regions are in red. C) Distribution of the nine most abundant GC42 sequence types. For each GC42 sequence type, the total GC42 copy number in all *S. cerevisiae* strains and the number of strains containing the corresponding sequence type are shown. D) GC42 density (units/kb) in indel regions compared with that in whole genomes in the five pairs of closely related genomes. The *P*-value is based on the Mann–Whitney U test.
Figure 3. Nucleotide alignment of two GC42 homologous positions and their flanking regions. A, there are GC42 presence and absence; B, there are GC42 presence, GC42 subunit presence, and GC42 absence. The GC42 unit is overlined. Dots indicate identities relative to the top sequence in each panel, whereas letters represent nucleotide differences. The strain names are colored by their GC42 pattern, GC42 presence in red, GC42 subunit presence in blue and GC42 absence in green. The putative co-conversion-tract nucleotides are colored for GC42 presence or GC42 subunit presence in the same color with the corresponding strain.
Figure 4. GC42 exchange between *S. cerevisiae* and *S. paradoxus*. A) Schematic presentation of horizontal transfer and propagation into new host. B) Evidence of horizontal transfer. Phylogenetic analysis for the flanking ±100 bp homologous regions of a GC42 unit (arrowed in Figure 1). C) Evidence for proliferation after horizontal transfer. Sequence alignment of the homologous region for the second GC42 in N44 and IFO1804 strains. The GC42 position is highlighted in gray. Dots indicate identities relative to the N44 GC42 sequence, whereas letters represent nucleotide differences.
Figure 5. Merger and shuffling of GC42. There are two types of GC42 in *S. paradoxus*: stand-alone and part of a merged 86-nucleotide GC cluster. A) Predicted secondary structure of the merged 86-nucleotide GC cluster in *S. paradoxus*. B) Distribution of stand-alone GC42 (green) and merged GC42 (red) in *S. paradoxus*. For each homologous position, the likely ancestral state was estimated and shown in a pie chart. The pie charts on the top row favor an ancestral state of absence; while the pie charts on the second row favor an ancestral state of presence. C) Multiple alignment of GC42 and their precursor GC18 in *S. cerevisiae*. D) Schematic presentation of merger and shuffling of GC clusters.
Figure 6. Distribution of GC clusters that share an identical 13-nucleotide sequence at the 5'-end. The boxplot refers to GC content for all GC clusters sharing GC13 (conserved region). The x-axis indicates the length of GC-rich sequences adjacent to the identical 13-nucleotide sequence, while the y-axis indicates the number of unique sequence types for each sequence length.
Figure 7. Expression of GC42 homologs. As a comparison, three protein genes, *rps3* (var), *atp8* and *atp6* genes are shown. The RPKMs are normalized to have identical *atp6* RPKMs between the GCDA5 and GCDA8 strains, both of which are derived from *S. cerevisiae* BY4741 (isogenic to S288c).
Figure 8. Model for the lifecycle of GC-rich TEs. GC-rich TEs undergo rapid substitution, dynamic merger, shuffling and horizontal transfer, with details discussed in the main text.