
Marco Maccaferri*§1, Junli Zhang*1, Peter Bulli†1, Zewdie Abate*, Shiaoman Chao**, Dario Cantu***, Eligio Bossolini*, Xianming Chen††, Michael Pumphrey†, Jorge Dubcovsky*,††, J. Dubcovsky

* Department of Plant Sciences, University of California, Davis, CA 95616, USA
§ Department of Agricultural Sciences (DipSA), University of Bologna, Bologna 40127, Italy
† Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA
†† USDA-ARS, Wheat Genetics, Quality Physiology, and Disease Research Unit, and Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
** USDA-ARS, 1605 Albrecht Blvd, Fargo, ND 58105, USA
*** Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
††† Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

1 The first three authors contributed equally to this study.

2 Corresponding author: J. Dubcovsky. Email: j.dubcovsky@ucdavis.edu Phone: (530) 752-5159
RUNNING TITLE: Stripe rust resistance in spring wheat

KEYWORDS:

Disease resistance, genetic map, yellow rust, bread wheat, association mapping.

1Corresponding author: Jorge Dubcovsky, Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA. E-mail: Jdubcovsky@ucdavis.edu

Phone: 1-530-752-4361 Fax: 1-530-752-4361
New races of *Puccinia striiformis* f. sp. *tritici* (*Pst*), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1,000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western USA, and seedlings were tested with four *Pst* races. A single nucleotide polymorphism (SNP) Infinium 9K-assay provided 4,585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Higher levels of *Pst* resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 QTL explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL mapped far from *Pst* resistance genes and QTL identified in previous studies, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease.
INTRODUCTION

Stripe rust disease of wheat, caused by the fungus *Puccinia striiformis* Westend. f. sp. *tritici* Erikss. (henceforth *Pst*), poses a major threat to global wheat production (Chen 2005; Milus *et al.* 2009) and negatively affects grain quality (Dimmock and Gooding 2002). Although multiple fungicide applications can control this pathogen, developing resistant varieties is the most efficient and environmentally sustainable means for reducing losses due to this disease (Line 2002; Chen 2005).

Pst accessions are classified into physiological races based on their virulence profile on a set of wheat differential lines (Wan and Chen 2014) (e.g. Table S1), whereas *Pst* resistance genes are classified as either race-specific or race non-specific based on their effectiveness against different *Pst* races. Race-specific resistance genes, which are effective only against a subset of races, are usually expressed from the seedling to the adult plant stages and generally result in a strong hypersensitive response associated with high levels of resistance. Race non-specific resistance genes are effective against all *Pst* races, are generally expressed at adult plant stages, and are characterized by various degrees of resistance (quantitative or partial resistance). Many of these partial resistance genes exhibit enhanced resistance at high-temperatures and are designated as high-temperature adult plant resistance genes (Chen 2013). Pyramiding multiple partial resistance genes is required to confer adequate levels of resistance (Singh *et al.* 2000; Singh *et al.* 2005). Both race-specific and race non-specific resistance or partial resistance genes have been used in breeding for rust resistance (Chen 2005; Lowe *et al.* 2011a). However, high genetic variation in the pathogen population and the rapid rate of selection for new virulent races...
have forced wheat breeders to focus on pyramiding strategies that combine multiple race-specific and/or race non-specific resistance genes to increase the durability of the deployed resistance.

The 2013 Catalogue of Gene Symbols for Wheat (McIntosh et al. 2013) and the 2013-2014 Supplement (http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/2013-2014_Supplement.pdf) include 67 officially named Yr genes (Yr1 to Yr67) and 42 with temporary Yr designations. At least 16 of the named genes have been introduced into wheat varieties and breeding lines from wheat relatives and alien species (Chen et al. 2014). Unfortunately, most of these resistance genes are no longer effective against a new group of Pst races that appeared around the year 2000 (Chen et al. 2010), which has generated the need for the identification of new sources of resistance. Although recent QTL studies have documented additional sources of resistance (Lowe et al. 2011b; Sukhwinder-Singh et al. 2012; Vazquez et al. 2012; Christopher et al. 2013), the use of bi-parental populations limits the extent of the germplasm that can be explored for new sources of resistance.

Genome wide association studies (GWAS) provide comprehensive surveys of germplasm collections and are an excellent complement to bi-parental mapping studies. Since GWAS exploits historical recombination events accumulated over multiple generations, the short evolutionary history of polyploid wheat (Dubcovsky and Dvorak 2007) and its self-pollinating reproductive system result in lower mapping resolution compared to outcrossing species with a longer evolutionary history such as maize (Chao et al. 2010). An advantage of the high levels of linkage disequilibrium reported in wheat is that the number of markers required for finding marker-trait associations is greatly reduced (Chao et al. 2010).

To avoid the discovery of false marker-trait associations, GWAS studies require adequate assessment and corrections for population structure (Flint-Garcia et al. 2003; Yu et al. 2006;
Kang et al. 2008; Stich et al. 2008; Larsson et al. 2013). Even with these corrections, GWAS has limited power to detect allele variants present in rare frequencies (Brachi et al. 2011; Wallace et al. 2014; Zuk et al. 2014), or loci with multiple allelic variants (Zhang et al. 2012).

In spite of these limitations, GWAS has been successfully used in mapping QTL for different traits in several plant species (Brachi et al. 2010; Zhao et al. 2011; Wang et al. 2012; Jia et al. 2013; Lipka et al. 2013). In wheat, GWAS has been successfully used to study agronomic traits (Breseghello and Sorrells 2006; Yao et al. 2009; Dodig et al. 2012), quality traits (Reimer et al. 2008; Reif et al. 2011), pre-harvest sprouting (Mohan et al. 2009; Kulwal et al. 2012), and disease resistance (Adhikari et al. 2011; Hao et al. 2012; Kollers et al. 2013; Letta et al. 2013).

In this study, we evaluated 1,000 accessions from the USDA-ARS National Small Grains Collection (NSGC) spring wheat core collection for resistance against Pst. Resistance was evaluated both at the seedling stage in controlled environments (to four specific Pst races) and at the adult plant stage in multiple years and field locations in the western USA (to mixtures of naturally occurring Pst races). We found evidence for ten high-confidence associations that were consistent across locations and compared their chromosome locations with previously mapped Pst resistance genes and QTL. We also identified the colinear regions in the rice and Brachypodium genomes to accelerate the identification of additional markers for these QTL regions.

MATERIALS AND METHODS
Plant materials

One thousand accessions were randomly selected from the 2,235 *Triticum aestivum* ssp. *aestivum* accessions available in the spring wheat core collection assembled by the USDA-ARS Small Grains and Potato Germplasm Research Unit. This core collection was assembled using passport and phenotypic data and includes accessions from the different wheat producing regions of the world. Accessions from 89 countries were represented in this study, including accessions from South America (20.9%), Africa (20.6%), Europe (19.6%), Asia (29.1%), North America (7.0%) and Australia (2.8%). Seeds and DNAs used in this study were obtained from single plant selections increased in a nursery grown at the USDA-ARS Small Grains and Potato Germplasm Research Unit, Aberdeen, ID, USA. The genetic characterization of these 1,000 accessions (see SNP genotyping section below) resulted in the selection of 875 non-redundant accessions for the GWAS analysis, which are listed in supplemental File S1.

Stripe rust response evaluation: adult-plant field conditions

Accessions were evaluated under natural disease epidemics in six field trials performed at three locations: Mount Vernon (48° 25’ 12”N 122° 19’ 34”W) in the western side of Washington state, Pullman (46° 43’ 59” N 117° 10’ 00”W) in the eastern side of Washington state, and Davis (38° 33’ 14”N 121° 44’ 17”W) in northern California. Trials in Davis and Pullman were performed in 2011 and 2012, and those in Mount Vernon in 2012 and 2013. The different year-location combinations are referred hereafter as “environments”. Planting was in mid-November in Davis and mid-April for both Mount Vernon and Pullman. Over-summering and over-wintering of stripe rust can occur in both Pacific Northwest and California, facilitating local
recurrent epidemics (Sharma-Poudyal et al. 2013). *Pst* inoculum is often shared between California, Arizona, New Mexico and Northwestern Mexico. Additionally, *Pst* over-summering in northeastern California may constitute a source of inoculum for central California (Kolmer et al. 2009) and for the Pacific Northwest (Chen 2005).

In all field trials, accessions were evaluated as non-replicated single-rows. Rows were 2.0 m long with 0.40 m spacing between rows in experiments at Davis, and 1.0 m long with 0.25 m spacing at both Mount Vernon and Pullman. The susceptible checks used were ‘D6301’, planted every six rows in Davis, and ‘Lemhi’, planted every 20 rows in Washington. The same susceptible checks were also planted as spreader rows bordering the nurseries to ensure production of sufficient inoculum to provide uniform stripe rust infection.

Stripe rust response was evaluated twice during the mid- to advanced-phases of disease development to limit the number of escapes. These evaluations were performed between plant heading (Zadoks 50) and grain filling stage (Zadoks 80), when most flag leaves of the susceptible checks displayed a disease severity of at least 50%. Only the evaluation showing the highest average disease pressure between the two stages (usually the second one) was used in the GWAS analysis. The infection type (IT) was scored using a 0-9 scale described before (Line and Qayoum 1992). Disease severity (SEV) was scored as percentage of infected leaf area.

Additionally, days to heading and plant height were evaluated to test their correlation with *Pst* resistance. Other morpho-physiological traits such as occurrence of pseudo-black chaff, awns, wax, and glume hairiness were recorded as controls for line identification.

Stripe rust response evaluation: single-race seedling test
Seedlings of the 875 accessions were evaluated for IT response to four Pst races, PSTv-4, PSTv-14, PSTv-37, and PSTv-40 (Wan and Chen 2014), under controlled greenhouse conditions. The Pst races were maintained at the USDA-ARS, Washington State University. PSTv-37 is a predominant and widely distributed race in the US, while PSTv-4, PSTv-14, and PSTv-40 are predominantly found in the Pacific Northwest and California. The virulence/avirulence formulas of the four races are described in Table S1 (Wan and Chen 2014).

Three seeds of each accession were planted per well in a 96-well tray containing Sunshine® mix growing medium (SunGro Horticulture, Agawam, MA, USA). Lines of the stripe rust differential set and the stripe rust-susceptible ‘Avocet S’ were seeded in a separate 96-well tray. The seeded trays were placed in a rust-free greenhouse at 20 °C with 50% relative humidity. Seedlings were watered daily, and the gibberellin inhibitor, (2-chloroethyl trimethylammonium chloride (OHP, PA) was used at a concentration of 1500 ppm to slow down the seedling growth rate. Trays of 11-day old seedlings were inoculated with urediniospores of each race mixed with talc. The inoculated seedling trays were placed in a dark dew chamber overnight at 10°C with 100% relative humidity for 20 h. Following the incubation, seedlings were transferred to a greenhouse with a diurnal temperature cycle programmed to change gradually from 20 °C at 2:00 pm to 4°C at 2:00 am. Day/night regimes of 16 hours light and 8 hours darkness were maintained throughout the experiment. ITs were scored 18-20 days after inoculation when the rust was fully developed on the susceptible checks. ITs were scored using a 0 to 9 scale (McNeal et al. 1971) similar to that used for the adult plants under field conditions. Accessions with resistant to moderately resistant IT scores of 0 to 6 were re-tested with each respective Pst race.

Single nucleotide polymorphism genotyping
For each accession, genomic DNA was extracted from the same plant used to increase the seeds evaluated in this study. DNA extractions were performed at the USDA-ARS Small Grains and Potato Germplasm Research Unit using the CTAB protocol (Stewart and Via 1993). The DNA was precipitated by adding isopropanol, followed by washing of the pellet with ice-cold 70% ethanol, and re-suspension in 200 µl of Tris HCl EDTA (pH 8.0).

Genotyping was carried out at the USDA-ARS genotyping laboratory at Fargo, ND using the Infinium wheat SNP 9K iSelect assay from the Illumina platform (Illumina Inc., San Diego, CA, USA) developed by the International Wheat SNP Consortium (Cavanagh et al. 2013). The raw Illumina SNP data were processed with the GenomeStudio v2011.1 software (Illumina). The array yielded 5,234 scorable SNP markers. The polymorphic SNPs were ordered according to the scaled map positions of the hexaploid wheat 9K SNP consensus map (Cavanagh et al. 2013). The arm orientation of chromosomes 4A, 5A and 5B presented here is in opposite orientation to the published consensus map (Cavanagh et al. 2013).

The dataset was filtered using a 10% cutoff for missing data in either loci or accessions (23 accessions were eliminated). Based on the filtered SNP data, a triangular identity-by-state (IBS) genetic similarity matrix (Kang et al. 2008) was then obtained for all possible pairs of accessions. For groups of accessions with \(\geq 0.99 \) genetic similarity only one representative accession (the one with the lowest number of missing data) was retained per group. After applying these filtering criteria a total of 875 accessions were retained for the GWAS. Only SNPs with minor allele frequency (MAF) \(\geq 0.10 \) (i.e. minor allele present in at least 87 accessions) were considered for GWAS. Out of the 4,585 SNPs that satisfied this criterion, 4,374 were positioned on the consensus map. Low frequency SNPs were discarded to focus on SNPs with higher statistical power (Turner et al. 2011). The downside of this approach is the potential
loss of true resistance loci present at low frequency (increase in false negatives). In this study we prioritized the reliability of the detected QTL over the sensitivity of the analyses.

Molecular markers tightly associated to two well characterized loci conferring resistance to multiple pathogens were included as internal controls. The diagnostic KaspLr34 assay (http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/SNPs/Documents/MAS, = wMAS000003) was designed around a 3 bp indel in exon 11 of the Lr34/Yr18 gene (Lagudah et al. 2009). Marker csSNP856 (=Kasp856) is tightly linked to the Lr67/Yr46 locus, but is not diagnostic for the resistance gene (Forrest et al. 2014). Data for these two control markers are summarized in File S3.

Population structure and genetic diversity

The mapped SNP data, together with the map information from Cavanagh et al. (2013) were analyzed with HAPLOVIEW v4.2 (Barrett et al. 2005) using the tagger function \(r^2 = 1.0 \) to define a set of 3,114 non-redundant SNPs for calculation of the kinship matrix. A subset of 1,036 highly informative, non-redundant representative SNPs (tagSNPs) were also selected with HAPLOVIEW using the tagger function \(r^2 = 0.25 \). The tagSNPs were used for population structure analysis using a combination of distance- and model-based clustering analysis. Distance-based cluster analysis was carried out using the Ward clustering algorithm in R (R Core Team 2013) as implemented in “stats” package (hclust). The model-based quantitative assessment of subpopulation memberships of the accessions was carried out in STRUCTURE v 2.3.4 (Pritchard et al. 2000) using inferences based on molecular data only, and admixture model of population structure with correlated allele frequencies. Numbers of hypothetical
subpopulations ranging from \(k = 1 \) to 10 were assessed using 50,000 burn-in iterations followed by 100,000 recorded Markov-Chain iterations. To estimate the sampling variance (robustness) of population structure inference, five independent runs were carried out for each \(k \). The output from STRUCTURE was analyzed in STRUCTURE HARVESTER (Earl and Vonholdt 2012). The \(\Delta k \) statistics based on the rate of change in the logarithm of the probability of likelihood [\(\text{LnP}(D) \)] value between successive \(k \) values (Evanno et al. 2005) was used to predict the optimum number of subpopulations. Based on the final \(k \) values (4 groups and 7 subgroups, respectively), a Q-matrix (875 x \(k \)) including the corresponding population membership coefficients was obtained.

To determine the level of differentiation among subpopulations we calculated the fixation index (\(F_{st} \)) among all possible pairwise combinations of the 7 subpopulations using the software Arlequin v. 3.5 (Excoffier et al. 2005). For this calculation we used all 4,585 SNPs and used 1,000 permutations at \(P = 0.001 \). We also calculated the gene diversity (\(D \)) of each of the 7 subpopulations using the 4,585 SNPs with published formulas (Weir 1996).

Linkage disequilibrium analysis

HAPLOVIEW was used to obtain the linkage disequilibrium (LD) squared allele frequency correlation (\(r^2 \)) estimates for all pairwise comparisons between intra-chromosomal SNPs, and to visualize the local LD patterns. To analyze the overall pattern of LD decay over genetic distances, syntenic pairwise LD \(r^2 \) estimates from all chromosomes were plotted versus the corresponding pairwise genetic distances and a non-linear regression model was fitted in R based on the equation relating LD, recombination rate, and population size (Sved 1971; Rexroad and
Vallejo 2009). The curve fitting parameter α was set to 1 (no mutations). Non-linear fitting of the model was carried out using the non-linear least squares (nls) method in R. The map distance at which LD fell below the r^2 thresholds of 0.3 was used to define the confidence intervals (CIs) of QTL detected in this study. This is a frequently used LD threshold for QTL detection (Ardlie et al. 2002; Shifman et al. 2003; Khatkar et al. 2008; Lawrence et al. 2009).

Phenotypic data analysis

To improve normality of the original phenotypic data, logit, square root, arcsine and log transformation methods were tested. For IT, the data were square root transformed ($IT_{\text{transf}} = \sqrt{\frac{(IT+0.25)}{10}}$) and for SEV the data were arcsine-square root transformed ($SEV_{\text{transf}} = \arcsine\left(\sqrt{1-\frac{(SEV+0.25)}{100}}\right)$). The Shapiro-Wilk normality test confirmed the improved normality of the transformed data relative to the original data. Even though the correlations between normal scores and BLUE (best linear unbiased estimates) values from all six locations (BLUE-all) calculated from the transformed data were relatively high (IT $W=0.98$ and SEV $W=0.99$), departures from normality were still significant.

The transformed data were subjected to combined analyses of variance (ANOVA) over environments using a mixed linear model procedure including genotype, environment and genotype by environment interactions as random factors. Heritability (h^2) estimates (Table 1) were calculated using the Restricted Maximum Likelihood (REML) method (Corbeil and Searle 1976). BLUE values were obtained across locations and years considering genotypes as a fixed effect in the model. BLUE values were then used to perform GWAS.
Pearson correlation coefficients among environments were calculated for IT and SEV values to evaluate the consistency of the resistance responses. Correlations between field-based \(Pst \) resistance responses and both heading date (HD) and plant height (PH) were calculated to investigate the influence of these traits on resistance. The proportion of variation (\(R^2 \)) in \(Pst \) response across accessions explained by population structure was calculated using multiple regression of single environment- and adjusted mean-phenotypes on the quantitative Q-7 STRUCTURE membership coefficient matrix.

Association analysis

GWAS for loci governing \(Pst \) response in the filtered set of 875 accessions was performed using 4,585 informative SNPs, and the compressed mixed linear model (Yu et al. 2006; Zhang et al. 2010) implemented in the R package GAPIT (Lipka et al. 2012). Association tests were carried out for: i) all single environment data sets, ii) BLUEs across experiments (years) for each location, and iii) BLUEs across all six environments.

Different association test models were compared using the Bayesian information criterion (BIC) calculated using GAPIT for IT and SEV data from all environments (Table S2). The following models were tested: i) fixed general linear model (GLM) with no correction for population structure, ii) GLM models corrected for population structure using the first 10 eigenvectors from principal component analysis (PC10), percent membership coefficients based on STRUCTURE (Q4 and Q7) and qualitative assignment to Ward clusters (W4 and W7, where 4 indicates the four main groups and 7 the subpopulations), iii) mixed linear model (MLM) with the 875 x 875 kinship matrix (K), and iv) all possible combinations of K and the other five methods. Models
were also evaluated using plots of observed vs. expected cumulative \(P \) values based on the IT data from Davis 2011 (Stich et al. 2008) (Fig. S1). All mixed linear models including K performed similar to each other and better than models without K (Table S2, Fig. S1). In addition, the K mixed linear model without additional corrections showed the best BIC value for both IT and SEV across all environments (Table S2) and was selected for all GWAS analyses.

Association probability values were estimated and both marker-wise and experiment-wise thresholds were selected for different analyses. The selected experiment-wise threshold was based on the Bonferroni-corrected method with \(\alpha = 0.10 \), which is roughly equivalent to a marker-wise threshold \(P \) value = \(1 \times 10^{-4} \) (9.65 x \(10^{-5} \) for 1036 tag-SNPs).

QTL that were significant (\(P \leq 0.05 \), marker-wise) in at least three of the six environments for IT and/or SEV, with at least one environment with highly-significant differences (\(P \leq 0.01 \), marker-wise) were first selected to identify \(Pst \) resistance loci with broad spectrum resistance effective across multiple locations. The same QTL selection criteria were applied to a second GWAS that included only accessions with BLUE-all IT scores higher than 3. The objective of this second analysis, which included 593 accessions, was to find QTL for partial resistance that might have been masked by the presence of major resistance genes. The 97 QTL that passed the previous two selection criteria for IT or SEV are summarized in the Supplemental Information. Among these 97 QTL, only 10 were significant for the Bonferroni test (experiment-wise \(P \leq 0.10 \)) and are discussed in detail in this study. The cumulative effect of the 10 significant QTL and their interactions was estimated using an ANOVA model including population structure (Q7) as covariate.

Multiple co-locating and/or adjacent SNPs in the consensus map significantly associated with the disease response were assigned to a single QTL when the LD \(r^2 \) values among markers were \(\geq \).
0.3, inter-marker distances were within the QTL confidence interval, and the SNPs showed consistent direction of the effects. The SNPs with \(P \) values indicating the strongest association was considered as the QTL-representative marker (henceforth, QTL-tagging SNP).

Enrichment of markers in the QTL regions and preliminary annotation

To increase the number of markers in each QTL region, the consensus map from the Illumina 90K SNP assay (Wang *et al.* 2014) was projected onto the 9K SNP consensus map (Cavanagh *et al.* 2013), which was used as reference map in BIOMERCATOR v4.2 (Sosnowski *et al.* 2012). Flanking sequences of all the 9K and 90K Illumina SNPs that mapped within the QTL confidence intervals (± 1.6 cM) were then used to BLAST *T. turgidum* (Kronos) transcriptome, *T. urartu* transcriptome (Krasileva *et al.* 2013) and *A. tauschii* cDNA database (http://plants.ensembl.org/Aegilops_tauschii/Info/Index) to obtain longer query sequences for colinearity analysis. Sequence hits with alignment length more than 99% of the query and more than 98% identity were used as query in BLASTX searches of *Brachypodium* (*Brachypodium distachyon* (L.) P. Beauv) and rice (*Oryza sativa* L.) databases using Gramene (Monaco *et al.* 2014) (http://www.gramene.org). Annotations for the orthologous *Brachypodium* and rice genes were retrieved from Phytozone v9.1 (http://www.phytozone.net/). Results from protein domain databases (pFAM domain descriptions), Protein ANalysis THrough Evolutionary Relationships (PANTHER), EuKaryotic Orthologous Groups description (KOG) and Gene Ontology terms (GO) are summarized in **File S2**. Based on these annotations we identified *Brachypodium* and rice *R* genes, which encode proteins that recognize pathogen effectors or their modified host targets. These proteins are characterized by the presence of a variable leucine-rich repeat (LRR), and
include CC-NB-LRR (coiled-coil domain, nucleotide binding site, LRR), RLP (receptor like proteins coupled with extracellular LRR) and RLK (kinase domain coupled with LRR) (Chisholm et al. 2006).

Comparison of QTL locations with previously reported Yr genes and QTL

For comparison with previous studies, the 10 experiment-wise significant QTL identified in the GWAS, 56 named Yr genes (McIntosh et al. 2013) (Catalogue of gene symbols for wheat: 2013-2014 Supplement: (http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/2013-2014_Supplement.pdf) and 169 previously mapped QTL were projected onto a common integrated map including different marker types (File S4).

The integrated map was produced extending the iterative map compilation process described in the previous section (“iterative maps compilation” tool in Biomercator v4.2 (Sosnowski et al. 2012)). The process started with the 9K SNP consensus map (Cavanagh et al. 2013), followed by the sequential projection of the 90K SNP consensus map (Wang et al. 2014), the tetraploid consensus map (Maccaferri et al. 2014), the Synthetic x Opata DH GBS map (Saintenac et al. 2013), the Diversity Array Technology (DArT) integrated map (http://www.diversityarrays.com/search/node/Wheat%20DArT%20map), the 2004 SSR consensus map (Somers et al. 2004), and the Synthetic x Opata ITMI BARC SSR map (Song et al. 2005). The software option for automatic resolution of common markers inversions was used.

For the named Pst resistance genes the closest flanking markers were used to generate confidence intervals that are reported in File S5. Distances in cM were converted into relative % length distances by dividing them by total chromosome length, and were then projected onto
schematic chromosomes. Confidence intervals for published QTL were calculated using Darvasi and Soller prediction formulas (Darvasi and Soller 1997). QTL identified in this GWAS were projected on the same compiled map, using confidence intervals of ± 1.6 cM (where LD was predicted to fall below the critical levels of $r^2 = 0.3$).

RESULTS

Spring wheat panel composition and population genetic structure

Based on genetic profiles of the Illumina iSelect 9K SNP array, 875 non-redundant genotypes with less than 10% missing data were identified among the 1,000 spring *T. aestivum* ssp. *aestivum* accessions initially selected from the NSGC core wheat collection. These 875 accessions (File S1) included 172 landraces, 255 registered cultivars, 299 breeding lines, 6 genetic stocks and 143 unclassified accessions. The accessions originated from 87 countries on six continents and are representative of the diverse wheat growing areas in the world (Figure 1).

The characterization of these 875 accessions using a set of non-redundant genome-wide tagSNPs and a combination of hierarchical Ward clustering and quantitative population structure model-based Bayesian clustering revealed the presence of four main groups. Groups 1 and 4 were further subdivided into two and three subgroups, respectively; giving a total of seven subgroups that reflect the population structure of these accessions (Figure 2).

This population structure showed some association with the geographic distribution of the accessions present in this panel (Figure 1). Group 1A was well represented in Mexico, in the
Middle East (Egypt, Israel and Syria), and in the eastern and southern regions of Africa (Kenya, Zimbabwe and South Africa). Group 2 was predominant in accessions from Russia, Kazakhstan, Northern and Eastern Europe as well as Canada and USA. Group 3 was frequent in Mediterranean countries in Europe and Northern Africa, Australia and South America, where spring wheats are predominantly planted in the fall to better exploit winter precipitations. Group 4 was predominant in countries from Asia, and is further subdivided into three distinct subgroups. Subgroup 4A was predominant among landraces and cultivated materials from Iran, Kazakhstan, Afghanistan, Tajikistan, and Pakistan on one side, and Taiwan and Japan on the other side. Subgroup 4B was found mainly in Western Asia (Iran, Armenia and Turkey) and Saudi Arabia; whereas subgroup 4C was predominant in countries from Southern Asia (India, Nepal and Pakistan).

The results from Ward’s clustering, the genotypic similarities, and the subgroup membership coefficients based on STRUCTURE are shown in Figure 2. The STRUCTURE membership coefficients revealed a high degree of admixture in a large number of accessions, particularly among cultivars and modern breeding materials (Figure 2). This result is consistent with the complex network of germplasm exchange that characterizes modern wheat breeding worldwide. It is important to point out that the proportions of subgroups presented in Figure 1 and in the clusters in Figure 2, represent the proportions of accessions in the NSGC spring wheat core collection, but may not necessarily represent the current composition of cultivars in a specific country or group.

Spring wheat panel response to Pst
The response of the 875 selected accessions to *Pst* was evaluated in six environments (3 locations x 2 years per location) characterized by very high infection levels of *Pst*. Phenotypic variation was observed in all environments, with infection types ranging from highly resistant (13% of accessions with IT 0-2) to highly susceptible (17% of accessions with IT 7-9). The frequency distributions of BLUE-all values for IT and SEV were approximately normal, with a slight shift in the IT response towards resistance (Figure 3A and D). The square root and arcsine transformations used in this study improved the normality of the data (Figure 3B and E). The analysis of variance (Table 1) showed that the variance components for genotype were highly significant (*P* ≤ 0.0001) for both the individual locations and the combined analysis across the six environments. By contrast, the variance components for environment were not significant across all analyses (Table 1). The variance components for the genotype by environment interactions were significant only in Davis (*P* ≤ 0.01 for IT and *P* ≤ 0.05 for SEV). Consistent with the previous results, heritability values for IT and SEV were high for the individual locations (0.72 to 0.87, Table 1) and even higher for BLUE values across all locations (*h*² for IT= 0.89 and for SEV= 0.91, Table 1).

The high IT and SEV heritability values indicate limited environmental variation relative to genotypic variation, an observation supported also by high and significant correlations among environments. Pearson correlation coefficients for IT averaged 0.73 ± 0.03 within locations and 0.65 ± 0.01 across locations (Table 2). Very similar correlations among environments were observed for SEV (*R* = 0.74 ± 0.05 within locations and 0.66 ± 0.01 across locations, Table 2). As expected, average correlations between SEV and IT values were the highest within the same environment (*R* = 0.83 ± 0.02), intermediate within the same location in different years (*R* = 0.70
± 0.03), and the lowest among locations ($R = 0.63 \pm 0.01$, Table 2). The correlation between IT and SEV BLUE-all values was very high ($R = 0.93$, Table S3).

The extent to which the P_{st} response of the 875 different accessions was influenced by population structure is presented in Figures 2D, 3C and 3F. In Figure 2D the IT and SEV values of each accession are presented as heat-maps with blue indicating resistance and red susceptibility. A higher proportion of resistant accessions was evident in group 4C, whereas a higher proportion of susceptible accessions was observed in group 4A. A more balanced distribution of resistant and susceptible accessions was observed for the other subpopulations (Figure 2D). A similar trend was observed in the box plots for IT (Figure 3C) and SEV (Figure 3F). An ANOVA among subpopulations showed significantly higher IT and SEV averages in subpopulation 4C and significantly lower averages in subpopulation 4A (Tukey’s test $P<0.05$, except for one non-significant SEV differences between subpopulations 4A and 4B). The association between population structure and P_{st} resistance was also reflected in significant multiple regressions ($P \leq 0.01$) between BLUE-all values and population structure (Q7) for both IT ($R^2 = 0.141$) and SEV ($R^2 = 0.166$). These significant associations indicated that corrections for population structure were required for the GWAS. Comparison of different population structure correction methods (Figure S1 and Material and Methods) indicated that the use of the kinship matrix (K) was the most informative option for this dataset.

Corrections for plant height and heading time were evaluated to determine if they influenced the GWAS results for P_{st} resistance. Both traits are critical for wheat performance in the field and are known to have multiple pleiotropic effects. However, in this study negligible correlations were observed between P_{st} resistance (IT and SEV BLUE values across all six environments) and both heading time ($R^2 < 0.005$) and plant height ($R^2 < 0.05$). Therefore, neither of these traits
was included as covariate in the GWAS for *Pst* resistance. None of the high-confidence QTL selected in this study (Table 3) showed significant association with plant height or heading time. However, among the lower-confidence QTL, significant associations were detected for one heading time QTL (*IWA8513*) and five plant height QTL (*IWA692, IWA1923, IWA4347, IWA6630*, and *IWA3796*), which were excluded from Table S4.

Spring wheat panel linkage disequilibrium estimation

The extent of LD and the average trend of LD decay rate in this association panel were estimated based on pairwise LD squared correlation coefficients (r^2) for all intra-chromosomal SNP loci. The trend of LD decay was described by a non-linear regression of the pair-wise r^2 values on the corresponding map distances based on the Illumina 9K SNP consensus map (Cavanagh et al. 2013) and by a box-plot diagram of LD r^2 distribution (Figure 4). Among the pairs of markers that were completely linked in the consensus map the median LD r^2 was 0.69 (inter-quartiles ranging from 0.32 to 0.98). In the next class, including non-completely linked markers separated by less than 1 cM, the median LD r^2 decreased to 0.3. Thus, on average, a 50% LD decay rate was observed within 1 cM genetic distance. For the pairs of markers linked at 1 to 5 cM the median r^2 decreased to 0.12.

Similar results were obtained by fitting a non-linear regression equation (Sved 1971). Based on the fitted model, LD was predicted to fall below the nominal critical levels of $r^2 = 0.3$ at an inter-marker genetic distance of 1.6 cM (Figure 4). This 1.6 cM distance at each side of the peak of the significant associations was used to establish confidence intervals for the QTL-harboring regions.
Association analyses for *Pst* resistance across environments

Association analysis was performed separately for each of the 6 field environments to identify chromosome regions including *Pst* resistance genes effective against different combinations of *Pst* races. A total of 73 chromosome regions showed marker-wise significant associations with either IT or SEV in at least three environments (Table S4 and Figure S2). Among these QTL only seven were significant at the experiment-wise Bonferroni threshold of $P<0.10$ and are described in Table 3.

To test if additional partial resistance QTL were masked by the major resistance genes segregating in this panel, we performed a second set of GWAS in which 282 accessions with highly resistance infection types (ITs of 0-3) were not included in the analyses. GWAS using the remaining 593 accessions with IT>3 revealed 35 QTL showing marker-wise significant associations with either IT or SEV in at least three environments (Table S5, Figure S3). Eleven of these 35 QTL overlapped with the previous set of 73 and 24 were new (Table S5). Seven of the 35 QTL were significant at the experiment-wise Bonferroni threshold ($P<0.10$). Among these seven, four overlapped with the ones identified in the previous GWAS (Table S4), and three (*IWA3892, IWA980* and *IWA1034*) were new and were added to Table 3.

Detailed information for the 10 significant loci is presented in Table 3, which includes the representative SNP, the suggested name for the QTL, and the probabilities of association with IT and SEV values from the six individual environments and BLUE values. Table 3 also includes the favorable allele and its frequency in the complete association panel and in each of the seven subpopulations. Five out of the 10 significant loci had closely linked SNPs (< 1.6 cM and in LD
to each other) that also showed significant associations with Pst resistance (Tables S4 and S5), providing additional support for the association between that chromosome region and resistance to Pst. Two of these QTL are described in more detail in Figure 5. In this figure, the significance of the phenotype-SNP association (as –log P) is plotted along the consensus map (Cavanagh et al. 2013) and compared with local r² LD patterns below. SNP-phenotype associations rapidly decayed within 1-2 cM, in accordance with the observed trend of LD decay rate estimated from SNP pairs (Figure 4).

Table 3 also indicates which of the 10 significant QTL identified in the field studies were also significantly associated with resistance to the four individual Pst races tested at the seedling stage in controlled environments. Five of the ten loci were significant for both the adult plant (field studies) and seedling tests (controlled environment). A similar proportion was observed among the lower-confidence QTL (47%, Table S4). QTL identified in the second GWAS for partial resistance showed a lower proportion of loci that were significant in the seedling tests (30%, Table S5). The levels of significance of the adult plant and seedling QTL were generally similar, except for IWA4280 that showed exceptionally strong associations in the seedling tests (P < 10⁻²⁴) but only moderate associations in the field experiments (Table S4).

The frequencies of favorable alleles in the different subpopulations for the 10 significant QTL-tagging SNPs identified from the multi-environmental trials are also summarized in Table 3. Similar frequency information is also available for lower-confidence QTL that were significant in at least three environments (Tables S6 and S7). Favorable alleles for QTL associated with markers IWA167, IWA5375, and IWA6988 were present at high frequency in subpopulation 4C (Pakistan-India-Nepal) and at relatively low frequencies in most of the other subpopulations. The favorable allele for IWA422 was present at relatively high frequency among the three Asian
subpopulations (4A, 4B and 4C) and at lower frequencies in other subpopulations. The opposite profile was observed for _IWA7257_ that was present at very low frequency in the three Asian subpopulations and higher frequencies in the other subpopulations. Subpopulation 4C showed a relatively higher proportion of favorable alleles with very high or very low frequencies, a trend associated with the lowest genetic diversity of subpopulation 4C amongst the seven subpopulations (Table S6).

The proportion of phenotypic variance explained by the individual QTL for IT and SEV BLUE values across all environments ranged from 0.4% to 2.2% (Table 3). When these 10 QTL were analyzed together in an ANOVA including population structure as covariates (Q7), they explained 15% and 12% of the observed variance for IT and SEV BLUEs across all environments, respectively (excluding variation explained by the population structure, Table S8). When the six significant interactions among loci were added to the model, the proportion of explained phenotypic variation (excluding population structure) increased to 19% for IT and to 16% for SEV BLUE values across all environments (Table S8). Interestingly, when the interactions were added to the model, the highly significant effects of _IWA422_ and _IWA5202_ became non-significant. These two markers were involved in four of the six significant interactions that are presented in Figure S5. In general, the presence of the resistance allele from one locus resulted in a reduced effect for the interacting locus (Figure S5A-E). However, in the _IWA6988 x IWA167_ interaction, the presence of the susceptible alleles from one of these two loci was associated with a reduction or elimination of the effect of the interacting locus (Figure S5F).

Two markers tightly linked to known _Pst_ resistance genes on chromosome arms 7DS (_Lr34/Yr18/Pm38_) and 4DL (_Lr67/Yr46_) were used as controls. The scoring of these two markers, their linkage with other SNPs, and their association with _Pst_ resistance traits are
described in supplemental File S3. Diagnostic marker KaspLr34 showed a MAF of 17.8% (resistant allele), which is higher than the 10% threshold selected in this study. The KaspLr34 marker was significantly associated to IT and SEV responses for three of the six environments (DVS_2012, MTV_2012, MTV_2013), and adjusted averages across all environments were significant experiment-wise (Bonferroni<0.10). KaspLr34 did not show appreciable LD (maximum $r^2 = 0.04$, File S3) with any of the 22 polymorphic SNPs mapped on chromosome 7D.

Marker Kasp856, which is tightly linked to Lr67/Yr46 (chromosome 4DL), showed a MAF of 8.6%, and therefore, it would have been excluded from our GWAS. This marker was strongly associated to Pst severity values in DVS-2011, DVS-2012, and MTV-2013, and also showed experiment-wise significant associations to the adjusted averages across all environments. Kasp856 was in LD to IWA5375 (r^2 value = 0.41, MAF=10%, File S3), which was found in our GWAS to be significantly associated to Pst resistance. Markers IWA6277, IWA5381, IWA5766, IWA5375, and Kasp856 defined three main haplotypes within a 6.3 cM region. The haplotype G-A-G-T-A at these five markers was associated to Pst resistance, supporting the results obtained from the single SNP markers (File S3).

Relationship between number of favorable alleles and Pst resistance

Considering all QTL-tagging SNPs with marker-wise significant effects in at least three environments (97 in total, including the 24 for partial resistance), the number of favorable alleles present in a specific accession ranged from 23 to 65. The genetic profiles of the accessions for the 97 QTL-tagging SNPs are reported in File S1, where accessions were ranked based on the
number of favorable alleles. The 87 accessions (10%) with the highest number of favorable alleles (favorable alleles= 56.6 ± 0.3) showed significantly lower ($P<0.0001$) IT (2.3 ± 0.1) and SEV (22.5% ± 1.8%) values than the 87 accessions with the lowest number of favorable alleles (favorable alleles= 34.7 ± 0.3, IT= 6.8 ± 0.2, SEV= 79.0 ± 2.0). These significant associations were also reflected in highly significant correlations ($P<0.0001$) between the number of favorable alleles and both IT ($R= 0.68$) and SEV ($R= 0.67$) values. This result indicates that the variation in the number of favorable alleles in these 97 QTL explains 45-46% of the variation in Pst resistance in this germplasm collection, excluding variation explained by population structure (Figure S4). Thus, this dataset may be a powerful tool for genomic predictions of stripe rust resistance.

Comparison of significant QTL with rice and *Brachypodium* genomes

To facilitate the identification of additional markers and to accelerate the discovery of potential candidate genes, we established the colinearity between confidence intervals for the 10 QTL identified in this study and the sequenced *Brachypodium* and rice genomes (File S2). As a first step, we increased the number of markers in the QTL-confidence intervals by projecting the wheat SNP consensus map generated from the Illumina 90K assay (including 40,269 SNPs) onto the reference 9K Illumina consensus map using the program BIOMERCATOR v4.2 (Sosnowski et al. 2012). On average, 12 SNP markers from the 9K assay and 80 projected from the 90K assay (total 92) were detected per QTL confidence interval (Table S10). Sequences of the original and projected wheat SNP markers were then used to find the best hits in *Brachypodium* and rice.
The *Brachypodium* and rice synteny relationships for the 10 QTL confidence intervals are described in detail in **File S2**. On average, 60 *Brachypodium* and rice colinear annotated genes were identified per confidence interval (**Table S10**). Based on the Phytozome v9.1 database (http://www.phytozome.net/) 12.7% of the annotated colinear genes were classified as *R* genes (CC-NB-LRR, RLP and RLK), with higher proportions found in the confidence intervals for QTL *IWA3892*, *IWA422*, *IWA5202*, and *IWA1034* (**Table S10**).

Comparison of significant QTL with known *Pst* resistance genes

To identify which of the ten QTL-tagging SNPs described in **Table 3** mapped on regions similar to 227 previously identified *Pst* resistance genes (*Yr*) and QTL, we projected both sets of markers on an integrated map including different types of markers (**File S4**). **Figure 6** shows the projection of these resistance loci onto standardized chromosomes of similar length. The 10 highly-significant QTL identified in this study are presented to the left of the chromosomes and previously mapped *Pst* resistance genes and QTL to the right. The numbers on top of the QTL (**Figure 6**, blue bars) indicate the reference used to determine the confidence interval for the QTL. These references, together with the confidence intervals (in % length) are summarized in supplemental **File S5**.

Three of the 10 QTL-tagging markers reported in **Table 3** (*IWA980*, *IWA424*, and *IWA7257*) were mapped far from any currently known *Pst* resistance gene or QTL, and likely represent novel resistance loci (**Figure 6**, **File S5**). *IWA167* overlapped with *QYr.ufs-6D* (**Figure 6**), but the peaks of these two QTL were mapped on different chromosome arms and showed effects of different magnitude (**File S5**), suggesting that they likely represent different genes.
The other six QTL-tagging markers were found in the proximity (less than one tenth of the chromosome length) of named Yr resistance genes or previously mapped Pst resistance QTL (Figure 6). IWA422, IWA5202, and IWA5375 were mapped less than 3 cM from previously mapped Pst resistance genes (Figure 6 and File S5), suggesting that they may represent alleles of the same genes. IWA422 and IWA5202 were mapped to the distal regions of chromosome arms 2AS and 3BS regions, respectively, which include several previously mapped Pst resistance genes and QTL that can correspond to these 2 QTL (Figure 6 and File S5). IWA5375 was mapped in the proximity of the Lr67/Yr46 region, and they likely represent the same locus since no other Pst resistance genes or QTL were mapped in their proximity.

The other three QTL-tagging markers (IWA3892, IWA1034, and IWA6988) were mapped within the confidence intervals of previously mapped Pst resistance genes or QTL (Figure 6 and File S5). However, for each of these three QTL we found a second closely linked SNP that showed marker-wise significant associations with Pst resistance in at least three of the locations evaluated in this study (Table S4, gray letters in parenthesis in Figure 6). The relationship between each of these three pairs of linked SNP with previously mapped Pst resistance genes or QTL is discussed in detail in supplemental File S5.

DISCUSSION

Population genetic structure
The population structure of 1,000 accessions from the spring wheat core collection was used as covariate in the GWAS mainly to reduce the number of false associations (Yu et al. 2006), but it also provided additional valuable information. First, the genetic characterization of the 1,000 spring lines revealed the existence of ~100 near-identical lines (>99% identical) in this panel, which were eliminated from our analyses (together with another 25 with >10% missing data). The elimination of the near-identical lines from the NSGC spring wheat core collection can reduce the size of the collection without a significant loss of genetic diversity.

In addition, the genetic characterization of these accessions organized the spring wheat core collection into seven subpopulations of genetically related accessions (Figures 1 and 2). The Ward clustering analysis (Figure 2) revealed a major division between the subpopulations enriched in accessions from Asia (4A, 4B and 4C, henceforth “Asian” subpopulations) and subpopulations that include a large proportion of accessions from other parts of the world (1A, 1B, 2 and 3, henceforth “Western” subpopulations). This division was also observed in a study of SNP diversity in the D-genome (Wang et al. 2013), and may reflect the ancestral eastward and westward expansion of agriculture (and of domesticated T. aestivum) after its initial domestication in the Fertile Crescent roughly 10,000 years ago (Dubcovsky and Dvorak 2007).

This major division was further supported by pairwise comparisons among subpopulations using the fixation index (F_{st}, Table S9), which provides a measure of population differentiation due to genetic structure (Holsinger and Weir 2009). Pairwise comparisons among the four “Western” subpopulations showed smaller F_{st} values than comparisons between the “Western” and “Asian” subpopulations, or among the “Asian” subpopulations (Table S9). Among the “Asian” subpopulations, group 4C was the most divergent (Table S9). This subpopulation is the smallest
(44 accessions) and the less diverse one, with an average polymorphism information content that is roughly half of the averages observed in the other six subpopulations (Table S6).

The “Western” subpopulations include a large proportion of materials released after 1960 (55%), which were likely influenced by the Green Revolution. CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo) played a central role in the development and distribution of these Green Revolution varieties, and accounts for 90% of the accessions from Mexico presented in Figure 1. CIMMYT lines in this collection belong mainly to the four “Western” subpopulations, which may explain the abundance of these subpopulations in regions that frequently receive or exchange germplasm with CIMMYT. Many accessions included in the “Western” subpopulations show evidence of high levels of admixture (Figure 2), which likely reflects the frequent germplasm exchanges among wheat breeding programs from these regions. A higher level of admixture among spring wheat varieties than among winter wheat varieties has been reported also in a different germplasm panel (Cavanagh et al. 2013).

Association between population genetic structure and Pst resistance

Subpopulations 1A, 1B, 2 and 3 show a uniform distribution of Pst IT and SEV values (Figure 3C and F), possibly an additional reflection of the extensive admixture observed in these populations. By contrast, a significant association between population structure and Pst response was observed for the three subpopulations from Asia (Figure 3). Accessions from India, Nepal and Pakistan in subpopulation 4C displayed a higher proportion of moderately resistant to resistant phenotypes than any of the other six subpopulations (Figure 3). Interestingly, a recent study of the ancestral relationships among worldwide populations of Pst has pointed to the same
Himalayan and neighboring region as the putative center of origin for Pst. This hypothesis was supported by the existence of high levels of diversity, presence of private alleles, clear signatures of recombination, and ability to produce sex-related structures in the Pst races from this region (Ali et al. 2014). Archeological remains indicate that hexaploid wheat was already cultivated in India-Pakistan between 4,000 and 2,000 BC (Tengberg 1999), which suggests that wheat populations from this region may have the longest history of interactions with Pst.

The ancient T. aestivum L. ssp. sphaerococcum (Percival) Mac Key (synonym: T. sphaerococcum Percival) endemic to southern Pakistan and northwestern India was described in the early 1920s as an early flowering semidwarf wheat with semispherical grains and with resistance to yellow rust (Percival 1921). This description indicates that sources of resistance to Pst had already evolved in this region before the introduction of modern wheat varieties. Several of the Pst resistance QTL identified in this study (IWA167, IWA6988, IWA5375, and IWA422) are present at higher frequencies in subpopulation 4C than in any of the other subpopulations (Table 3), and may represent valuable alleles to enrich the “Western” subpopulation with novel or infrequent resistance alleles.

By contrast, subpopulation 4A showed the lowest levels of resistance (Figure 3), suggesting that regions where varieties from this subpopulation are grown may be at a higher risk of Pst epidemics. Regions where subpopulation 4A is at high frequency (Figure 1) may benefit from the incorporation of resistance alleles identified in this study that are absent or at very low frequency in the 4A subpopulation (Table 3, S6 and S7). The observed heterogeneity of Pst resistance levels among subpopulations (Figure 3C and F) poses additional challenges for the discovery of real associations by GWAS. Adjustment of the GWAS analysis for population structure can reduce this problem, as demonstrated in previous studies in rice (Zhao et al. 2011).
and maize (Van Inghelandt et al. 2012), where similar levels of associations between phenotypes and population structure were reported.

The benefits of correcting for population structure are partially offset by an increase in false negatives. Some real associations that are highly correlated with the population structure can be lost in GWAS analyses corrected for population structure. Similarly, the increased protection for the identification of false positives achieved in this study by the elimination of SNPs with minor allele frequencies lower than 0.1 is offset by the inability to detect real resistance genes with low allele frequencies. In this initial study, we favored the more stringent criteria. However, alternative analyses can be performed using this dataset, which is publicly available through the T3 database (http://triticeaetoolbox.org/) and the ARS-GRIN system (http://www.ars-grin.gov/).

Significant associations in the GWAS

To identify new sources of resistance to *Pst* that were effective in different environments of the western USA we performed field evaluations in three locations with very different ecological conditions. In spite of these differences, we observed high correlations among IT and SEV values obtained from the different environments (*Table 2*). These high correlations suggest that there might be similar *Pst* populations across the western USA. This hypothesis is supported by the known paths of spore dispersal by wind (Chen 2005) and by periodic spore surveys across this region. In the last published *Pst* race survey from 2010 (Wan and Chen 2014), 20% of the races detected in California and Washington were shared between the two states (PSTv-8, PSTv-14, PSTv-36, PSTv-37, PSTv-40, and PSTv-41) providing further support to the previous hypothesis. The high correlations among environments were also reflected in high heritability for
IT and SEV values (Table 1), which were favorable for the identification of significant associations in the GWAS analyses.

Even with the high heritability values observed in this study, only 10 QTL were significant at the experiment-wise Bonferroni threshold of $P<0.10$ selected for this study (Table 3). Among these 10 significant QTL, seven were detected in the GWAS based on all 875 accessions and three in the second GWAS that excluded accessions with high levels of resistance. This suggests that the GWAS for partial resistance provided additional power to detect associations that were somehow masked by the effect of the major resistance genes. A similar proportion of additional loci were detected among the lower confidence QTL for partial resistance (24 out of 97, Tables S4 and S5). Among the SNPs associated with QTL for partial resistance a smaller proportion of loci were also effective at the seedling stage (30%) compared with the proportion observed in the complete GWAS analysis (47%). This is not surprising since many partial resistance genes are effective only at the adult plant stage. In summary, elimination of highly resistant accessions from a GWAS for disease resistance was a useful strategy to identify additional partial resistance genes. The incorporation and deployment of partial resistance genes is an important objective for wheat breeding programs because this type of resistance genes have historically provided more durable resistance than race specific resistance genes (Johnson 1984; Kolmer 1996; Santra et al. 2008; Krattinger et al. 2009; Lowe et al. 2011a; Chen 2013).

The two markers from known Pst resistance genes Yr18 (Lr34/Yr18/Pm38) and Yr46 (Lr67/Yr46) included as controls in a separate GWAS, both showed experiment-wise significant associations with Pst resistance ($P<1 \times 10^{-4}$, File S4). No linked markers were identified in our study for Yr18 suggesting that the 9K iSelect chip did not provide enough coverage in the D genome to detect all Pst resistance loci present in our panel. The Yr46 marker was closely linked
with markers identified in our study that were significantly associated to Pst resistance.

However, the Kasp856 marker for Yr46 would have been excluded in our original GWAS because its MAF was below our selected 10% MAF threshold. Fortunately, some of the SNPs linked to Kasp856 have MAF higher than 10% and the QTL was detected. This result exemplifies the potential loss in sensitivity associated with increased stringency.

The proportion of variation in IT values explained by each of the 10 selected QTL was relatively small (0.4% to 2.2%, Table 3), and similar to values previously reported in GWAS for other quantitative traits in maize and rice (Zhao et al. 2011; Peiffer et al. 2013; Peiffer et al. 2014). When the 10 QTL were combined in a single ANOVA, 15% of the variation (Table S8) in Pst resistance was explained by the model (excluding the contribution of the population structure). This percentage increased to 19% when six significant two-way interactions were added to the ANOVA model (Table S8 and Figure S5). We have initiated the introgression of these loci into the common susceptible background ‘Avocet S’ to test these interactions experimentally.

In this study we also identified 87 QTL that showed significant GWAS associations in at least three environments but that did not pass the stringent experiment-wise Bonferroni threshold. These loci may have a higher proportion of false positives and were, therefore, excluded from the results reported in Table 3. However, the inclusion of all 97 QTL in a combined ANOVA model increased the percent of explained variation in IT BLUE-all values from 15% to 45% (excluding variation explained by population structure). These results suggest that some of the lower-confidence QTL likely represent real associations. As a compromise, we included the 87 lower-confidence QTL in Tables S4 and S5, as candidates for future validation studies.

The presence of real resistance genes among the lower-confidence QTL is also supported by a high and significant correlation ($R= 0.68$) between the number of favorable Pst alleles (among
the 97 loci) and the level of Pst resistance (File S1, Figure S4). This high correlation suggests that accessions carrying a high number of favorable alleles for the different QTL identified in this study may be useful parental lines for breeding programs interested in diversifying their sources of Pst resistance genes. This high correlation also suggests that a genomic selection approach aimed at increasing the number of favorable Pst alleles for the QTL identified in this study is likely to increase the levels of Pst resistance in the breeding populations.

The results discussed above suggest that Pst resistance in the spring wheat core collection was governed by several resistance genes with large effects (Table 3) modulated by a larger number of genes with smaller effects (Tables S4 and S5). This trait architecture is different from the architecture found for resistance to downy mildew in a previous GWAS in Arabidopsis. The Arabidopsis study, which tested resistance at the seedling level using specific races and in controlled environmental facilities, detected few dominant resistance genes that were concentrated in only four genomic regions (Nemri et al. 2010). The larger association panel used in our study and the increased statistical power may have contributed to the higher number of QTL identified in this study. This higher number of detected QTL may also be the result of the more complex environmental conditions found in the field relative to the controlled environment. In the field, the frequency of infection and the rate of development of the pathogen can be modulated by different morphological and physiological characteristics of the plant and also by the simultaneous presence of multiple Pst races and other pathogens. In addition, the use of adult plants in our field studies can result in the detection of additional adult plant resistance genes that are not effective at the seedling stage.

Comparison of significant QTL with colinear genes in rice and Brachypodium
The LD decay rate between the 9K Illumina SNP (50% LD decay rate at 1 cM) in this association panel was faster than that observed in elite US spring wheat (50% LD decay rate at 6.3 cM (Chao et al. 2010). This is not surprising because this elite US spring wheat panel includes a less diverse germplasm than the NSGC spring wheat core collection analyzed in this study, and therefore has a lower level of historical recombination. The inter-marker distance at which LD fall below the critical levels of $r^2 = 0.3$ (1.6 cM) was selected to determine confidence intervals for the 10 significant QTL identified in Table 3.

The projection of the 90K Illumina data (Wang et al. 2014) onto these 10 QTL confidence intervals resulted in a 7.7-fold increase in the number of SNP per confidence interval relative to the initial results from the 9K chip map. The larger number of markers available per confidence interval (on average 92 markers) facilitated the identification of colinear regions in the sequenced genomes of the grass species Brachypodium and rice (File S2). The annotation of the proteins encoded by the Brachypodium and rice colinear genes was used to infer the putative function of the wheat genes from where the SNPs were derived. Among the wheat SNPs with a corresponding annotated rice or Brachypodium protein (Table S10), 12.7% were classified as R genes with two large groups in the confidence intervals for QTL IWA422 and IWA5202 (Table S10). Interestingly, the colinear regions for IWA422 (Brachypodium Chr. 5, 1.43-4.20 Mb and rice Chr. 4, 0.07-6.96 Mb) and for IWA5202 (Brachypodium Chr. 2, 0.74-0.82 Mb and rice Chr. 4, 0.72-0.92 Mb) include several NB-LRR and LRR-receptor-like kinases. These results suggest that this region may include an ancestral R gene cluster that predates the divergence of the grass subfamilies. It would be interesting to investigate if the multiple Pst resistance genes and QTL mapped to the colinear distal regions of wheat chromosome arms 2AS and 3BS (Figure 6 and File S5) are associated with the presence of similar clusters of R genes in wheat.
In summary, these comparative analyses provided a large number of molecular markers for each of the 10 targeted regions, which can be used both to identify haplotypes associated with resistance alleles, and to accelerate the construction of high-density maps for these QTL. In addition, pathogen-response related genes identified in the colinear regions in *Brachypodium* and rice may provide a starting point for the search of candidate genes in the colinear regions in wheat.

Comparison of significant QTL with previously mapped genes

The results presented in Figure 6, provide an overview of the relationships between the loci identified in this GWAS and 227 previously mapped *Pst* resistance genes and QTL. However, these results should be considered with caution due to the inherent limitations of consensus maps. The limited number of common markers between previous SSR-based and new SNP-based maps can result in distorted distances in some region of the integrated map. The comparison is also complicated by the low resolution of some of the original maps of *Pst* resistance genes and by the extended LD in wheat. Therefore, the relationships described below and in File S5 should be considered as tentative. For closely linked loci, allelism tests will be required to determine which of the QTL identified here are new resistance loci and which are alleles of previously identified genes.

Among the ten significant QTL reported in Table 3, *IWA980, IWA424*, and *IWA7257* were mapped on chromosome regions where, to our knowledge, no *Pst* resistance genes or QTL were reported before. These results suggest that they are likely novel *Pst* resistance loci (Figure 6). *IWA167*, one of the most significant QTL detected in this study, was mapped within the flanking
markers of a weak QTL from Cappelle Desprez (QYr.ufs-6D (Agenbag et al. 2012)). However, the peak of QYr.ufs-6D was mapped on the long arm of chromosome 6D whereas IAW167 is in the short arm. The different arm locations and the different strength of these two QTL suggest that they are likely the effect of different resistance genes (File S5). The IWA167 resistance allele was almost fixed in the subpopulation from South Asia (frequency = 0.95) and was found at very low frequency in some of the other subpopulations, suggesting that it might be a useful gene to diversify sources of resistance in wheat breeding programs outside South Asia.

QTL associated with IWA422, IWA5202, and IWA5375 were very close to previously mapped Pst resistance genes (< 3 cM) and likely represent alleles of these genes (File S5). The results from the last three significant loci (IWA3892, IWA1034, and IWA6988) are more difficult to interpret because each of them has a linked SNP marker that was also significantly associated (marker-wise) with Pst resistance in most of the locations tested in this study and will require additional allelism tests. In spite of these uncertainties, Figure 6 provides a good overview of the distribution of Pst resistance genes on the wheat chromosomes.

CONCLUSIONS AND POTENTIAL APPLICATIONS

Since 2000, new aggressive strains of Pst were identified in three continents: North America, Australia and Europe (Hovmoller et al. 2008). These races have increased aggressiveness and the ability to produce more spores at higher temperatures than before (Milus et al. 2009). These new races with broader spectra of virulences have generated serious stripe rust epidemics in areas previously considered unsuitable for the disease, and have turned stripe rust into one of the most economically damaging wheat pathogens (Hodson 2011). Therefore, the identification of novel
Pst resistance genes in this GWAS represents a valuable addition to the set of tools available to wheat breeding programs to fight this devastating pathogen.

This GWAS also provides a good overview of the distribution of resistance genes and the frequencies of the resistance alleles in different wheat subpopulations around the world. The frequency information is particularly useful for wheat breeders interested in diversifying the sources of Pst resistance in their regional programs. In particular, wheat germplasm from the Himalayan and neighboring regions emerged from this study as a valuable source of resistance genes that are absent or present at low frequencies in other regions of the world.

As in other association studies, additional experimental validation will be required to identify which of the accessions carrying favorable SNP alleles actually carry the associated resistance gene. Allelism tests will be also required to determine which of the identified QTL represent novel resistance genes and which ones are alleles of previously mapped genes. To initiate this validation process we have crossed several accessions carrying favorable alleles for the selected QTL with the susceptible variety “Avocet S”, which is the common genetic background in the current single gene differential lines (Chen et al. 2014). These single QTL introgressions in a common genetic background will greatly simplify the planned allelism tests. In summary, this GWAS study has identified new sources of Pst resistance and provided closely linked markers to accelerate their validation and deployment in wheat breeding programs.

AKNOWLEDGEMENTS

This project was supported by the National Research Initiative Competitive Grant 2011-68002-30029 (Triticeae-CAP) from the USDA National Institute of Food and Agriculture, the Borlaug

Christopher, M. D., S. Y. Liu, M. D. Hall, D. S. Marshall, M. O. Fountain et al., 2013 Identification and mapping of adult-plant stripe rust resistance in soft red winter wheat cultivar 'USG 3555'. Plant Breeding 132: 53-60.

McIntosh, R. A., Y. Yamazaki, J. Dubcovsky, W. J. Rogers, C. F. Morris et al., 2013 Catalogue of gene symbols for wheat in 12th Int. Wheat Genet. Symp., edited by R.A. McIntosh, Yokohama, Japan

McNeal, F., C. Konzak, E. Smith, W. Tate, and T. Russell, 1971 A uniform system for recording and processing cereal research data. Agric. Res. Serv. USDA ARS.

Milus, E. A., K. Kristensen, and M. S. Hovmoller, 2009 Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99: 89-94.

Weir, B. S., 1996 Genetic data analysis II. Sunderland, MA: Sinauer Publishers

TABLES

Table 1 Means and ranges for response to *Puccinia striiformis* f. sp. *tritici* of 875 spring wheat accessions from the National Small Grains Collection (NSGC) in 6 environments (3 locations x 2 years). Covariance estimates from the random model were calculated using the restricted maximum likelihood (REML) method on the transformed data.

<table>
<thead>
<tr>
<th></th>
<th>Mount Vernon (WA)</th>
<th>Pullman (WA)</th>
<th>Davis (CA)</th>
<th>Across environments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IT</td>
<td>SEV</td>
<td>IT</td>
<td>SEV</td>
</tr>
<tr>
<td>Mean</td>
<td>4.5</td>
<td>51.8</td>
<td>4.1</td>
<td>50.7</td>
</tr>
<tr>
<td>Min.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Max.</td>
<td>9.0</td>
<td>100</td>
<td>9.0</td>
<td>100</td>
</tr>
<tr>
<td>σ_G^2</td>
<td>0.0241****</td>
<td>0.1199****</td>
<td>0.0208****</td>
<td>0.0759****</td>
</tr>
<tr>
<td>σ_E^2</td>
<td>0.0003 ns</td>
<td>0.0112 ns</td>
<td>0.0077 ns</td>
<td>0.0302 ns</td>
</tr>
<tr>
<td>σ_{GE}^2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>σ_e^2</td>
<td>0.0091**</td>
<td>0.0248****</td>
<td>0.0086****</td>
<td>0.0287****</td>
</tr>
<tr>
<td>h^2</td>
<td>0.84</td>
<td>0.87</td>
<td>0.72</td>
<td>0.72</td>
</tr>
</tbody>
</table>

σ_G^2 = genotype variance estimate; σ_E^2 = environment variance estimate; σ_{GE}^2 = genotype x environment variance estimate; σ_e^2 = residual variance estimate; h^2 = broad sense heritability. IT = infection type; SEV = disease severity. ns = not significant; * $P< 0.05$; ** $P< 0.01$; *** $P< 0.001$; **** $P< 0.0001$.

50
Table 2 Pearson's correlation coefficients for infection type (IT) and disease severity (SEV) response to *Puccinia striiformis* f. sp. *tritici* of 875 NSGC spring wheat accessions in 6 environments a. Grey highlight indicates comparisons between the same location and year. Bold letters indicate comparisons between different years in the same location. All correlation coefficients are highly significant (*P* < 0.0001).

<table>
<thead>
<tr>
<th>IT vs. IT</th>
<th>MTV-12</th>
<th>MTV-13</th>
<th>PLM-11</th>
<th>PLM-12</th>
<th>DVS-11</th>
<th>DVS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-12</td>
<td></td>
<td>0.78</td>
<td>0.68</td>
<td>0.74</td>
<td>0.64</td>
<td>0.67</td>
</tr>
<tr>
<td>MTV-13</td>
<td>0.59</td>
<td>0.73</td>
<td>0.59</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLM-11</td>
<td>0.59</td>
<td>0.73</td>
<td>0.59</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLM-12</td>
<td>0.59</td>
<td>0.63</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVS-11</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVS-12</td>
<td>0.59</td>
<td>0.63</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEV vs. SEV</th>
<th>MTV-12</th>
<th>MTV-13</th>
<th>PLM-11</th>
<th>PLM-12</th>
<th>DVS-11</th>
<th>DVS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-12</td>
<td></td>
<td>0.83</td>
<td>0.68</td>
<td>0.72</td>
<td>0.65</td>
<td>0.72</td>
</tr>
<tr>
<td>MTV-13</td>
<td>0.68</td>
<td>0.72</td>
<td>0.55</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLM-11</td>
<td>0.55</td>
<td>0.72</td>
<td>0.55</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLM-12</td>
<td>0.55</td>
<td>0.58</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVS-11</td>
<td>0.55</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVS-12</td>
<td>0.55</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IT vs. SEV</th>
<th>MTV-12</th>
<th>MTV-13</th>
<th>PLM-11</th>
<th>PLM-12</th>
<th>DVS-11</th>
<th>DVS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-12</td>
<td>0.86</td>
<td>0.76</td>
<td>0.68</td>
<td>0.66</td>
<td>0.60</td>
<td>0.71</td>
</tr>
<tr>
<td>MTV-13</td>
<td>0.78</td>
<td>0.76</td>
<td>0.68</td>
<td>0.64</td>
<td>0.58</td>
<td>0.64</td>
</tr>
<tr>
<td>PLM-11</td>
<td>0.58</td>
<td>0.55</td>
<td>0.80</td>
<td>0.59</td>
<td>0.49</td>
<td>0.62</td>
</tr>
<tr>
<td>PLM-12</td>
<td>0.70</td>
<td>0.67</td>
<td>0.76</td>
<td>0.82</td>
<td>0.56</td>
<td>0.69</td>
</tr>
<tr>
<td>DVS-11</td>
<td>0.62</td>
<td>0.59</td>
<td>0.58</td>
<td>0.58</td>
<td>0.85</td>
<td>0.65</td>
</tr>
<tr>
<td>DVS-12</td>
<td>0.66</td>
<td>0.62</td>
<td>0.65</td>
<td>0.68</td>
<td>0.63</td>
<td>0.87</td>
</tr>
</tbody>
</table>

a Locations: MTV, Mount Vernon, WA; PLM, Pullman, WA; DVS, Davis, CA. Followed by year.
Table 3 Loci significantly associated with infection type (IT) or disease severity (SEV) in at least three environments (one at $P<0.01$) and with experiment-wise Bonferroni $P<0.10$.

<table>
<thead>
<tr>
<th>Marker IWA</th>
<th>3892<sup>a</sup></th>
<th>980</th>
<th>422</th>
<th>424<sup>b</sup></th>
<th>5202</th>
<th>1034</th>
<th>5375</th>
<th>6988</th>
<th>7257</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>QTL name</td>
<td>QYr.uc w-1B</td>
<td>QYr.uc w-1D</td>
<td>QYr.uc w-2A.2</td>
<td>QYr.uc w-2A.3</td>
<td>QYr.uc w-3B.2</td>
<td>QYr.uc w-4A</td>
<td>QYr.uc w-4D</td>
<td>QYr.uc w-5A.2</td>
<td>QYr.uc w-6B</td>
<td>QYr.uc w-6D</td>
</tr>
<tr>
<td>Chromosome</td>
<td>1B</td>
<td>1D</td>
<td>2A</td>
<td>2A</td>
<td>3B</td>
<td>4A<sup>c</sup></td>
<td>4D</td>
<td>5A<sup>d</sup></td>
<td>6B</td>
<td>6D</td>
</tr>
<tr>
<td>Position</td>
<td>123.4</td>
<td>49.3</td>
<td>9.9</td>
<td>78.3</td>
<td>3.9</td>
<td>181.7</td>
<td>26.9</td>
<td>189.2</td>
<td>112.3</td>
<td>73.2</td>
</tr>
<tr>
<td>Alleles (R underscored)</td>
<td>A/G</td>
<td>A/C</td>
<td>T/C</td>
<td>T/C</td>
<td>A/G</td>
<td>T/C</td>
<td>T/G</td>
<td>T/C</td>
<td>T/G</td>
<td>A/C</td>
</tr>
</tbody>
</table>

GWAS for IT

<table>
<thead>
<tr>
<th></th>
<th>MTV_2012</th>
<th>***<sup>f</sup></th>
<th>ns</th>
<th>***</th>
<th>ns</th>
<th>**</th>
<th>****</th>
<th>*</th>
<th>**</th>
<th>****</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTV_2013</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>**</td>
<td>*</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>PLM_2011</td>
<td>*</td>
<td>*</td>
<td>****</td>
<td>ns</td>
<td>***</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>PLM_2012</td>
<td>ns</td>
<td>***</td>
<td>***</td>
<td>ns</td>
<td>****</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>DVS_2011</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>DVS_2012</td>
<td>*</td>
<td>ns</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>BLUE_MTV</td>
<td>*</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td>****</td>
<td>***</td>
<td>ns</td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>BLUE_PLM</td>
<td>**</td>
<td>ns</td>
<td>****</td>
<td>ns</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>BLUE_DVS</td>
<td>****</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>BLUE_ALL</td>
<td>****</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>****</td>
<td>***</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
</tbody>
</table>

GWAS for SEV

<table>
<thead>
<tr>
<th></th>
<th>MTV_2012</th>
<th>***</th>
<th>ns</th>
<th>***</th>
<th>*</th>
<th>ns</th>
<th>*</th>
<th>***</th>
<th>ns</th>
<th>*</th>
<th>***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTV_2013</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>*</td>
<td>***</td>
<td>ns</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>PLM_2011</td>
<td>***</td>
<td>ns</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>PLM_2012</td>
<td>***</td>
<td>****</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>ns</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>DVS_2011</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>DVS_2012</td>
<td>*</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>BLUE_MTV</td>
<td>***</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>*</td>
<td>***</td>
<td>ns</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>BLUE_PLM</td>
<td>**</td>
<td>*</td>
<td>***</td>
<td>****</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>BLUE_DVS</td>
<td>****</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>*</td>
<td>***</td>
<td>***</td>
<td>****</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLUE_ALL</td>
<td>****</td>
<td>**</td>
<td>*</td>
<td>ns</td>
<td>**</td>
<td>***</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
</tbody>
</table>

GWAS seeding Significant races

<table>
<thead>
<tr>
<th></th>
<th>PSTv40</th>
<th>none</th>
<th>PSTv14</th>
<th>PSTv14 & 40</th>
<th>none</th>
<th>none</th>
<th>PSTv4</th>
<th>PSTv14</th>
<th>none</th>
<th>none</th>
</tr>
</thead>
</table>
| Frequency R allele
<p>| Overall | 0.70 | 0.44 | 0.31 | 0.70 | 0.37 | 0.17 | 0.10 | 0.16 | 0.23 | 0.10 |
| Subpop. 1A | 0.77 | 0.19 | 0.35 | 0.48 | 0.41 | 0.08 | 0.38 | 0.17 | 0.61 | 0.36 |
| Subpop. 1B | 0.87 | 0.17 | 0.10 | 0.83 | 0.52 | 0.04 | 0.12 | 0.10 | 0.32 | 0.10 |
| Subpop. 2 | 0.70 | 0.70 | 0.19 | 0.80 | 0.47 | 0.03 | 0.05 | 0.12 | 0.51 | 0.03 |
| Subpop. 3 | 0.76 | 0.60 | 0.25 | 0.88 | 0.40 | 0.17 | 0.02 | 0.15 | 0.11 | 0.06 |
| Subpop. 4A | 0.53 | 0.34 | 0.56 | 0.26 | 0.09 | 0.39 | 0.10 | 0.38 | 0.06 | 0.05 |
| Subpop. 4B | 0.77 | 0.43 | 0.77 | 0.97 | 0.32 | 0.28 | 0.01 | 0.23 | 0.01 | 0.01 |</p>
<table>
<thead>
<tr>
<th>Subpop. 4C</th>
<th>0.70</th>
<th>0.20</th>
<th>0.93</th>
<th>0.35</th>
<th>0.12</th>
<th>0.00</th>
<th>0.88</th>
<th>0.88</th>
<th>0.00</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>% explained variation</td>
<td></td>
</tr>
<tr>
<td>R^2 IT BLUE-all</td>
<td>0.7%</td>
<td>1.2%</td>
<td>0.4%</td>
<td>1.0%</td>
<td>2.2%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>1.6%</td>
<td>1.8%</td>
<td>0.7%</td>
</tr>
<tr>
<td>R^2 SEV-BLUE-all</td>
<td>0.7%</td>
<td>0.9%</td>
<td>0.8%</td>
<td>0.3%</td>
<td>1.3%</td>
<td>1.2%</td>
<td>0.6%</td>
<td>1.0%</td>
<td>1.4%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

a SNP indexes from the Illumina iSelect 9K wheat assay (Cavanagh et al. 2013). **Bold** IWA names were identified in the GWAS including only the 593 accession with IT scores ≥3, and **bold and underscored** were significant in both analyses. SNP loci in LD and significantly associated to the *Pst* response (IWA): 3892/846, 980/642, 422/423/3468/3469, 424/none, 5202/4796, 1034/none, 5375/5766, 6988/none, 7257/none, 167/none.
b *IWA424* was borderline significant in the Bonferroni test only for SEV and only in one location. Therefore, it should be considered with caution.
c *IWA1034* is in the region of 4AL translocated from 7BS (homology 7AS/4AL/7DS) (Devos et al. 1995).
d *IWA6988* is in the region of 5AL translocated from 4AL (homology 5AL/4BL/4DL) (Devos et al. 1995).
e Scaled position from hexaploid wheat consensus map (Cavanagh et al. 2013).
f Significance. Marker-wise: *= P<0.05, **= P<0.01, ***= P<0.001. Experiment-wise: ****= Bonferroni P<0.10.
FIGURE CAPTIONS

Figure 1 Geographic distribution of seven subpopulations identified in the analysis of the population structure of 875 accessions from the NSGC spring wheat core collection. The large pie chart indicates the relative number of accessions in the seven subpopulations. The smaller pie charts indicate their relative distribution in specific countries (the size of these pie charts is proportional to the number of accessions from that country).

Figure 2 Population structure and its relationship to *Puccinia striiformis* f. sp. *tritici* (*Pst*) resistance. (A) Ward’s clustering of 875 accessions from the NSGC spring wheat core collection. Vertical lines indicate genetic similarity thresholds used to classify accessions into 4 main groups (dashed lines) and 7 subgroups (dotted lines). (B) 875 × 875 kinship matrix based on simple matching genetic similarities (IBS: identity by state). Separations among Ward’s based groups are shown as horizontal dashed lines for main groups and as dotted-dashed lines for subgroups. (C) Matrices of membership coefficients of accessions corresponding to 4 to 7 hypothetical subpopulations derived from the STRUCTURE analysis (D) Response of accessions to *Pst* (IT: infection types, SEV: disease severity). Blue lines indicate *Pst* resistance and red lines *Pst* susceptibility (based on the best linear unbiased estimates over 6 environments). (E) Percentage memberships of accessions from the seven subpopulations to the four main continents.

Figure 3 Distributions of infection type (IT) and disease severity (SEV). Distributions of Best Linear Unbiased Estimates (BLUEs) across all six environments for IT (A-B) and SEV (D-E).
“W” indicates the correlation between observed values and normal scores for the original (A and D) and transformed (B and E) values. (C and F) Boxplot showing differences among subpopulations for (C) infection types (IT) and (F) disease severity (SEV).

Figure 4 Genome-wide average linkage disequilibrium (LD) decay over genetic distances. (A) Plot of pair-wise SNP LD r^2 values as a function of inter-marker map distance (cM) based on a reference consensus map (Cavanagh et al. 2013). The red curve represents the model fit to LD decay. The light-blue dashed line represents the ±1.6 cM confidence interval for the QTL regions where LD $r^2 = 0.3$. (B) Boxplot showing LD r^2 values for incremental classes of SNP pairwise map distances.

Figure 5 P value association plots and corresponding linkage disequilibrium (LD) r^2 patterns for two significant Pst resistance QTL. The upper part of the graph shows P value plots of marker-trait associations for best linear unbiased estimates (BLUEs) of infection types (IT) and disease severity (SEV) over six environments and for the three specific locations (MTV= Mount Vernon, PLM= Pullman, DVS= Davis). Map distances (X-axis) are from the 9K SNP consensus map (Cavanagh et al. 2013). –Log (P) significance thresholds are reported using dashed lines. SNP codes and corresponding local LD r^2 value patterns are in the lower part of the graph. Numbers within the diamonds of the triangular LD matrix are the r^2 values multiplied by 100.

Figure 6 Chromosome positions of Pst-associated QTL identified in this study (experiment-wise Bonferroni $P<0.1$) relative to previously mapped Pst resistance genes and QTL. Chromosome
lengths were all standardized to the same relative length. QTL-tagging SNPs identified in this GWAS are on the left side of the chromosomes. Those with a red line were significant only in the overall GWAS, those with a blue line only in the GAWS for partial resistance, and those with a purple line were significant in both (Table 3). Previously mapped Pst resistance genes (green) and QTL (blue) are on the right side of the chromosomes. The ID numbers on top of the QTL indicate references and confidence intervals provided in supporting File S5.

Supplemental Figures

Figure S1 Plot of observed vs. expected cumulative P values using different GWAS models. The compared models are based on the IT data from UC Davis, 2011. Naïve: no population structure correction; **Q4 and Q7**: general linear model (GLM) with STRUCTURE membership coefficients from the four main groups or the 7 subgroups as covariates; **Ward 4 and Ward 7**: GLM with Ward cluster coefficients from four main groups or seven subgroups used as covariates; **PC10**: GLM with first10 principal components as covariates; **K**: mixed linear model (MLM) with the 875×875 kinship matrix of identity-by-state (IBS). **K** was then combined with the previous 5 models (K+Q4, K+Q7, K+W4, K+W7, K+PC10). Genetic similarities were calculated using all 4,585 SNPs.

Figure S2 Selected QTL for Pst infection type (IT) and disease severity (SEV) in a collection of 875 spring hexaploid wheat. Only QTL significant in at least 3 environments (with at least one with $P<0.01$) are reported. Best Linear Unbiased Estimates (BLUEs) are calculated for each location separately and for the 6 combined environments (BLUE_ALL).
Figure S3 Selected QTL for partial resistance to *Pst* in a collection of 593 accessions of spring wheat with IT≥3. Only QTL significant in at least 3 environments (with at least one with \(P<0.01 \)) are reported. SNP names in red are also significant in the complete analysis in **Figure S2**. Best Linear Unbiased Estimates (BLUEs) are calculated for each location and for the 6 combined environments (BLUE_ALL).

Figure S4 Regression between (A) Infection type (IT) and (B) disease severity (SEV) and the number of favorable alleles in each of the 875 lines. Both regressions were highly significant (\(P<0.0001 \)). Original data is available in **File S1**.

Figure S5. Significant interactions among 10 selected QTLs (**Table S8**). IT.ALL.BLUE values are the least square means from the full model ANOVA for BLUE values across all locations (**Table S8**) ± the standard error of the least square means.
SUPPLEMENTAL TABLES

Table S1 Virulence / avirulence formulas for the four *Pst* races used in the GWAS for seedling resistance.

Table S2 Evaluation of different association models using percent of explained variation (R^2) and the Bayesian information criterion (BIC) implemented in GAPIT.

Table S3 Pearson’s correlation coefficients among the best linear unbiased estimates (BLUEs) of infection type (IT) and disease severity (SEV) response to *Pst* in single (MTV, PLM, and DVS) and combined locations (ALL) based on 875 spring wheat accessions from the NSGC.

Table S4 Loci associated with significant differences in resistance to *Pst* in at least three environments (one at $P<0.01$) in a collection of 875 spring wheat accessions.

Table S5 Loci associated with significant differences in partial resistance to *Pst* in at least three environments (one at $P<0.01$) in a collection of 593 spring hexaploid wheat with infection type ≥ 3.

Table S6 Frequencies across the seven subpopulations of favorable alleles for the QTL-tagging SNPs detected in the complete GWAS (875 accessions).

Table S7 Frequencies across the seven subpopulations of favorable alleles for the QTL-tagging SNPs detected in the GWAS for partial resistance (593 accessions).

Table S8 ANOVA for *Pst* infection type (IT) and severity (SEV) based on 10 significant QTL and population structure (Q7) as covariable.

Table S9 Pairwise fixation indexes (Fst) among populations based on 4,585 SNPs.
Table S10 Number of 9K SNP mapped and 90K SNP projected into the confidence intervals of the 10 significant QTL described in Table 3.

SUPPLEMENTAL FILES

File S1 Genetic profiles of the 875 spring wheat accessions for the 97 QTL-tagging SNPs. Accessions are ordered by the number of favorable alleles.

File S2 Results of BLASTX to *Brachypodium* and rice proteins using wheat transcripts corresponding to SNPs mapped to the confidence intervals of the 10 significant QTL as query (Table 3). Annotations were retrieved from the Phytozome database (http://www.phytozome.net/).

File S3 Control resistance genes *Yr18/Lr34* and *Yr46/Lr47*.

File S4 Integrated genetic map used to compare the relative map positions of *Pst* resistance genes and QTL detected in previous bi-parental population studies with the positions of the 10 GWAS QTL-tagging SNPs.

File S5 Supplemental information for Figure 6.
Figure 3
Figure 4

Inter-marker distance classes (cM)

Pair-wise LD estimate (r^2)
Figure 5

QTL-1B
QTL tagging- SNP: /IWA3892

QTL-2A
QTL tagging SNP: /IWA422