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ABSTRACT High-throughput quantitative DNA sequencing enables the parallel phenotyping of pools of
thousands of mutants. However, the appropriate analytical methods and experimental design that maximize
the efficiency of these methods while maintaining statistical power are currently unknown. Here, we have
used Bar-seq analysis of the Saccharomyces cerevisiae yeast deletion library to systematically test the effect
of experimental design parameters and sequence read depth on experimental results. We present com-
putational methods that efficiently and accurately estimate effect sizes and their statistical significance by
adapting existing methods for RNA-seq analysis. Using simulated variation of experimental designs, we
found that biological replicates are critical for statistical analysis of Bar-seq data, whereas technical repli-
cates are of less value. By subsampling sequence reads, we found that when using four-fold biological
replication, 6 million reads per condition achieved 96% power to detect a two-fold change (or more) at a 5%
false discovery rate. Our guidelines for experimental design and computational analysis enables the study
of the yeast deletion collection in up to 30 different conditions in a single sequencing lane. These findings
are relevant to a variety of pooled genetic screening methods that use high-throughput quantitative DNA
sequencing, including Tn-seq.

KEYWORDS

yeast
Bar-seq
galactose
functional

genomics
Sacchromyces

cerevisiae

Uncovering the connection between genotype and phenotype remains
one of the central challenges of modern genetics. At the same time, the
rate at which new genomes are sequenced currently outpaces our
capacity to functionally annotate those genomes. Addressing these
challenges requires efficient means of quantifying phenotypes associ-
ated with defined genetic perturbations. Methods for uniquely identi-
fying and quantifying phenotypic effects of mutant alleles in complex
mixtures enable the parallel analysis of hundreds to thousands of
genotypes. Pooled mutant analysis entails the use of either libraries
of defined mutants tagged with unique DNA sequences (molecular
barcodes) (Winzeler et al. 1999; Giaever et al. 2002) or complex
libraries of tens of thousands of unique mutants generated by random
insertional mutagenesis. Analogously, comprehensive libraries of short

hairpin RNAs (shRNAs) enable parallel analysis of perturbations of
mammalian genes in cell culture (Schlabach et al. 2008; Silva et al.
2008; Sims et al. 2011).

Recently, methods for estimating mutant abundances in complex
mixtures have been introduced that capitalize on advances in high-
throughput quantitative DNA sequencing. Barcode analysis by
sequencing (Bar-seq) was first developed to analyze libraries of
thousands of Saccharomyces cerevisiae gene deletion mutants (Smith
et al. 2009) and has subsequently been used to analyze a library of
deletion mutants in Schizzosaccharomyces pombe (Han et al. 2010).
The use of Bar-seq enables efficient, accurate, and comprehensive
genetic screens for addressing a variety of questions, such as defining
the genetic requirements for initiation and maintenance of cell quies-
cence in response to distinct starvation signals (Gresham et al. 2011).
In organisms for which barcoded mutant libraries are not available,
high-throughput DNA sequencing of pools of transposon insertion
mutants (Tn-seq) enables multiplexed mutant analysis. Tn-seq was
initially applied in studies of Streptococcus pneumonia (van Opijnen
et al. 2009) and Haemophilus in�uenzae (Gawronski et al. 2009) and
has subsequently been adapted for use in diverse organisms (Brutinel
and Gralnick 2012; Gallagher et al. 2011). Similarly, PhiTSeq facilitates
simultaneous analysis of thousands of transposon-mutagenized haploid
human cells (Carette et al. 2011). The widespread adoption of pooled
mutant screens using high-throughput quantitative DNA sequencing
attests to the power of these methods for efficient genetic analysis.
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In contrast to the rapid technological advances in pooled mutant
analysis, there has not yet been a statistical treatment of the experimental
design and analysis of data generated by high-throughput DNA
sequence analysis of these complex libraries. Thus, major methodological
and analytical questions remain unanswered. What is the appropriate
statistical framework for analyzing DNA sequence count data? What are
the sources of variation? What is the appropriate study design for
maximizing the power and accuracy to detect differences in mutant
abundances? What sequence read depth maximizes the precision of
these methods while minimizing the cost and resources required?

We undertook a study that aimed to address these questions with
the goal of providing guidance for the design and analysis of pooled
mutant screens using high-throughput DNA sequencing. Using
experimental analysis of the S. cerevisiae gene deletion collection in
two different conditions, we studied the contribution of treatment and
biological and technical variation to Bar-seq data (Figure 1). We
demonstrated that the negative binomial models used to analyze
RNA-seq data are also directly applicable to Bar-seq data. Using com-
putational subsampling of our experimental data, we studied the effect
of different experimental designs on the results from Bar-seq analysis.
We found that biological replicates substantially improved statistical
power, whereas technical replicates provided only moderate additional
statistical power. We also found that increasing sequencing depth
beyond 6 million reads per condition provided limited improvement
in the experimental results, regardless of experimental design.

Our results provide information directly relevant to designing
future high-throughput quantitative DNA sequencing experiments of
pooled mutants. For example, using an experimental design of four-
fold biological replication and no technical replication, we showed that
detection of mutants in the 4295 mutant yeast deletion collection with
two-fold (or more) change between conditions can be achieved with
96% power at a 5% false discovery rate (FDR) using as few as 6 million
reads per condition. This corresponds to a requirement of 1397
sequence reads per mutant per condition or 349 reads per biological
replicate library. Using our experimental and analytical methods for
Bar-seq analysis, it is possible to analyze the yeast deletion collection

in up to 30 different conditions using a single 200-million read lane
without sacrificing statistical power. Our findings should be
informative for other methods of pooled mutant analysis such as
Tn-seq.

MATERIALS AND METHODS

Strains, media, and sampling procedures
We used a haploid prototrophic gene deletion collection constructed
using the synthetic genetic array method (Tong et al. 2001). The
library contains the identical gene deletion alleles as the standard yeast
knockout collection (Winzeler et al. 1999), excluding gene deletions
that result in auxotrophies. Gene deletion alleles are marked with the
kanMX4 cassette conferring G418 resistance, which is flanked by
a unique 59 molecular barcode (the UPTAG) and a unique 39 molec-
ular barcode (the DNTAG). Each MATa mutant contains a functional
copy of the URA3, LYS2, LEU2, and MET15 genes and the can1D::
STE2pr-SpHIS5, lyp1D0, and his3D1 alleles. We used standard YPD
and YPGal media containing either 2% glucose or 2% galactose, re-
spectively (Amberg et al. 2005).

After growth of individual mutants on YPD agar plates, all
mutants were pooled to a final density of 1.5 · 109 cells/ml. Each
agar plate contained single colonies of individual genotypes and
replicated colonies of the control HOD0 strain. To define the rep-
licated time zero (t0) samples, we obtained two independent sam-
ples of 0.5 ml (i.e., 7.5 · 108 cells) from the pooled library. We
inoculated 5 ml from the pooled library (i.e., 7.5 · 106 cells) into
four-fold replicated cultures of either 5 ml YPD or YPGal. Cells
were grown for 24 hr (t24) to a final density of 3.3 · 108 cells/ml in
both conditions. We removed 2 ml (i.e., 6.6 · 108 cells) samples
from each of the four YPD cultures and four YPGal cultures and
purified genomic DNA using Qiagen Genomic-Tip 100 columns.

Library preparation and sequencing
We designed a two-step PCR protocol for efficient multiplexing of
Bar-seq libraries. In the first PCR step, UPTAGs from a single sample

Figure 1 Experimental design and results. (A) Our experimental design entailed two treatments (twenty-four hours of growth in glucose/YPD or
galactose/YPGal), four biological replicates, and two technical replicates, along with four samples at time point 0 [not shown in (A)]. (B) Heat map
of the Spearman correlation matrix of mutant counts by sample. Samples cluster according to time point and also by treatment (YPD vs. YPGal)
and biological replicate.
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were amplified with the primers Illumina UPTAG Index (59-ACG
CTC TTC CGA TCT NNNNN GTC CAC GAG GTC TCT-39) and
Illumina UPkanMX (CAA GCA GAA GAC GGC ATA CGA GAT
GTC GAC CTG CAG CGT ACG-39), and DNTAGs from the same
sample were amplified with the primers Illumina DNTAG Index (59-
ACG CTC TTC CGA TCT NNNNN GTG TCG GTC TCG TAG-39)
and IlluminaDNkanMX (59-CAA GCA GAA GAC GGC ATA CGA
GAT ACG AGC TCG AAT TCA TCG-39) in separate PCR reactions.
Illumina UPTAG and Illumina DNTAG primers contain a 5-bp se-
quence (denoted as NNNNN in the primer sequence) that uniquely
identifies the sample. We designed 120 unique sample indices that
differed by at least two nucleotides. A complete list of primer sequen-
ces is provided in Supporting Information, Table S1. We normalized
genomic DNA concentrations to 10 ng/ml and using 100 ng template
amplified barcodes using the following PCR program: 2 min at 98�
followed by 20 cycles of 10 sec at 98�, 10 sec at 50�, 10 sec at 72�, and
a final extension step of 2 min at 72�. PCR products were confirmed
on 2% agarose gels and purified using QIAquick PCR purification
columns.

We quantified purified PCR products using a Qubit fluorimeter
and combined 60 ng from each of the 20 different UPTAG libraries
and, in a separate tube, 60 ng from each of the 20 different DNTAG
libraries. The multiplexed UPTAG libraries were then amplified using
the primers P5 (59-A ATG ATA CGG CGA CCA CCG AGA TCT
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT-39) and
Illumina UPkanMX, and the combined DNTAG libraries were am-
plified using the P5 and IlluminaDNkanMX primers using the iden-
tical PCR program as the first step with 20 ng template. The 140-bp
UPTAG and DNTAG libraries were purified using QIAquick PCR
purification columns, quantified using a Qubit fluorometer, combined
in equimolar amounts, and adjusted to a final concentration of 10 nM
(i.e., 0.924 ng/ml). In total, the sequencing library contained 20
UPTAG and 20 DNTAG libraries from 20 different samples (Table
S2). The library was sequenced on a single lane of an Illumina HiSeq
2000 using standard methods, including the use of the standard Illu-
mina sequencing primer (59-ACA CTC TTT CCC TAC ACG ACG
CTC TTC CGA TCT-39). The qseq files for each of the 20 samples are
available from the NCBI Short Read Archive with the accession num-
ber SRA101498.

Read matching and statistical analysis
Sequence reads were matched to the yeast deletion collection barcodes
reannotated by Smith et al. (2009). Inexact matching was performed
by identifying barcode sequences that were within a Levenshtein dis-
tance of 2 from each read (Levenshtein 1966). Reads matching equally
to multiple barcodes were discarded. Sample indices were similarly
matched using a maximum Levenshtein distance of 1. The final matrix
of counts matching the UPTAG and DNTAG of each of the 20
samples is provided as Table S3. A set of 359 outliers was identified
that had fewer than 100 total reads across all 20 samples (Figure S1).
These low-count matches were likely due to sequencing error and
were removed. In addition, our pooled yeast gene deletion library
included a highly abundant strain (the HO gene deletion mutant,
which was present on each of the 96-well plates containing individual
mutants before pooling). The HO deletion mutant represented 19% of
all reads and was removed before computational analyses, leaving
a total of 139.8 million reads mapped to 4295 mutants.

Eigen R2 was used to determine the percent of variance explained
by the different factors in our experimental design for the t24 samples
(Chen and Storey 2008). Barcode counts were normalized using the
TMM method (Robinson and Oshlack 2010) after adding 1 to each

value and then were log-transformed, to avoid including differences in
per library read depth as a source of variation. The bottom 10% of
mutants was filtered out because lower counts have a disproportionate
effect on the technical variation. Eigen R2 was used to compute the
percent of variance explained by the treatment factor ðR2

TÞ and the
biological replicate factor ðR2

BÞ. Because the treatment factor is con-
tained within the biological factor, we report the biological percent of
variation as R2

B 2R2
T , and the technical variation as 12R2

B 2R2
T .

For differential abundance analysis, we first summed UPTAGs and
DNTAGs for technical replicates within each biological replicate. The
edgeR package (version 3.2.4) was used to perform dispersion estimation
and to perform an exact negative binomial test to calculate a p-value and
log-fold change for each mutant using the exactTest function using the
default parameters (Robinson and Mccarthy 2010). The qvalue package
was used to compute q-values (Storey and Tibshirani 2003).

Gene set enrichment analysis was performed using the Biological
Process ontology from SGD. Gene sets that had fewer than four genes
among the detected deletions were discarded in advance. We used the
Wilcoxon rank-sum test to compare the distribution of the estimated
log-fold changes within each gene set to those outside of the set
(Gresham et al. 2011). We used the qvalue package to set a 5% FDR
threshold, above which gene sets were declared significantly enriched.

Read subsampling
Separate subsamplings were performed for each combination of
replicates in each design. This requires one combination for the full
2 treatments · 4 biological replicates · 3 technical replicates design,

two combinations for the 2 · 4 · 1 design,

�
4
3

�
¼ 4 combinations

for the 2 · 3 · 2 design,

�
4
3

�
· 2 ¼ 8 combinations for the 2 · 3 · 2

design,

�
4
2

�
¼ 6 combinations for the 2 ·2 · 2 design, and�

4
2

�
· 2 ¼ 12 combinations for the 2 · 2 · 1 design. For each

combination, we performed subsampling over a sequence of 400
evenly spaced fractions of reads corresponding to 0.25%, 0.50%, . . .,
99.75%, and 100%.

For each fraction p, a subsampled count matrix S was generated
based on the full experiment matrix as Si,j �Binom(Xi,j, p). This is
equivalent to choosing a random sample of the sequenced reads and
then mapping them. The same analysis steps used for the full data set
were used to analyze each subsample and the same metrics were
applied to assess the results as used for the full experiment.

As the results for each experimental design depend on which of the
replicates was chosen for subsampling the results were smoothed for
each experimental design using a natural cubic spline with 20 degrees of
freedom for estimates of the power, accuracy and FDR. For estimates
of the informativeness of each experimental design, we used 15 degrees
of freedom because the number of significant gene sets identified in
each subsample showed greater variance than the other three metrics.

RESULTS

Experimental results
We aimed to dissect the sources of variation in pooled mutant screens
and to determine the appropriate analytical framework and experi-
mental design that maximizes the value of the assay while minimizing
cost and resources. All pooled genetic screens using mixtures of
mutants require generation of a library of mutants, experimental
treatment of the pooled mutants, and identification and quantification

Volume 4 January 2014 | High-Throughput Genetic Screens | 13

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/008565SI.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/TableS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/TableS2.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/TableS2.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/TableS3.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/FigureS1.pdf
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002386
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002386


of DNA sequences that uniquely identify each mutant using high-
throughput DNA sequencing. We designed an experiment to compare
growth of haploid yeast nonessential gene deletion mutants in two
different carbon sources, glucose (YPD) and galactose (YPGal), using
Bar-seq analysis of the molecular barcodes that uniquely identify each
mutant. To address the goals of our study, we prepared four biologi-
cal replicates grown for 24 hr in each condition and two technical
replicates (i.e., independent sequencing library preparation of the
same DNA sample) of each biological replicate (Figure 1A and Table
S2). We also obtained two independent samples from the unselected
library (time point 0) from which we prepared technical replicates.

To generate libraries for sequencing with an Illumina HiSeq, we
designed a simple two-stage PCR protocol (see Materials and Methods).
Each gene deletion is marked by two different molecular barcodes: one
59 (the UPTAG) and one 39 (the DNTAG) of the drug resistance
cassette. To multiplex sequencing of different Bar-seq libraries, we de-
veloped a PCR-based method for library preparation that incorporates
a unique sequence index for each library (see Materials and Methods).
We sequenced 40 libraries (20 UPTAG and 20 DNTAG) from 20
samples in a single lane of an Illumina HiSeq 2000. We obtained
185.2 million reads that passed quality filters and matched them to
the molecular barcodes by identifying sequences within a Levenshtein
edit distance of 2, which resulted in mapping 93.3% of reads. Using
a Levenshtein distance cutoff of 0 (i.e., an exact match) or 1 results in
successful mapping of 62.6% and 84.6% of the reads, respectively.

For the majority of mutants, the number of reads per barcode across
all experiments follows an approximately log-normal distribution and
ranges between 1000 and 100,000 (Figure S1). Low-count outliers that
likely resulted from sequencing errors were removed (Materials and

Methods). We found that UPTAGs and DNTAGs for each mutant
had similar counts in the majority of samples, with 2574 mutants within
a two-fold difference of each other (Figure S2). However, many mutants
had highly divergent counts: 1264 had more than a 10-fold difference
and 1052 had more than a 100-fold difference. These discrepancies were
likely attributable to one of the barcodes being lost because of sequenc-
ing error in either the barcode or the PCR priming site.

Correlation analysis of barcode counts showed that the lowest
correlations were between mutant abundance in the unselected library
(t0) and mutant abundance after 24 hr of growth in either glucose-
containing or galactose-containing media, indicating that differences
in cell growth rates results in substantial changes in the relative abun-
dance of mutants (Figure 1B). Growth in YPD yields higher correla-
tion with the t0 sample than growth in YPGal, indicating that growth
in galactose led to a greater shift in the relative abundance of mutants
than did growth in glucose. To identify differential effects of mutants
during growth in glucose and galactose, we restricted our analysis to
the t24 samples. We used eigen R2 (Chen and Storey 2008) to partition
the variance among these samples and found that 63.5% of the var-
iance was explained by the treatment, 20.3% was explained by biolog-
ical variation, and 16.1% was explained by technical variation
(Materials and Methods ). The apportionment of variance was con-
sistent across a wide range of percentile thresholds and using a variety
of normalization methods (Figure S3).

Computational analysis of differential
mutant abundance
The goal of pooled mutant screens is to identify mutants that exhibit
differences in abundance as a result of a defined treatment. The

Figure 2 Bar-seq quantifies mutant effects across
a range of sequence read depths. (A) Volcano plot
showing the relationship between the p-value (log-
scale) and log-fold change. Genes known to be
involved in activation or repression of the ga-
lactose utilization pathway are highlighted. The
p-value of the rightmost red point is computation-
ally indistinguishable from 0. (B) Plot of reads per
mutant in the entire experiment compared with
the estimated fold change after treatment.

14 | D. G. Robinson et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/TableS2.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/TableS2.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/FigureS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/FigureS2.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008565/-/DC1/FigureS3.pdf


appropriate statistical methods depend on the nature of the data,
which in the case of quantitative DNA sequencing of molecular
barcodes are discrete count data. As we observed in the work of
Gresham et al. (2011), the data are best described by an overdispersed
Poisson distribution (i.e., the variance of biological replicates is greater
than the mean) (Figure S4). The problem of comparing count data
between samples with different read depths while assuming overdis-
persed Poisson variation is related to that presented by differential
expression analysis of RNA-seq data, for which a negative binomial
test is used. In addition to the fact that Bar-seq data present some
characteristics problematic for t tests (i.e., lack of normality and
a strong mean–variance relationship), there is important motivation
for utilizing models specifically designed for count data. For example,
consider two mutants in two different conditions in which the data of
one are simply 1000· the other in read depth (e.g., counts 8 and 9 vs.
13 and 14 for mutant A and 8000 and 9000 vs. 13,000 and 14,000 for
mutant B). Whereas a t test results in the same p-value for both
mutants, a negative binomial model directly takes into account the
difference in read depth, resulting in drastically different p-values.
Because the difference between the mutants with the lowest total
number of reads to the highest number of reads is �2600-fold in
our experiment (Figure S1), this is a valid issue. Therefore, we used
a negative binomial model to test for mutants that were differentially
abundant as a result of the treatment.

We utilized the edgeR software package (Robinson and McCarthy
2010), which has an efficient implementation of the negative binomial
test that accounts for differing read depth and uses shrinkage to help

estimate dispersion parameters. We observed that dispersion estimates
underwent considerable shrinkage even when four biological repli-
cates were used (Figure S4). We found RNA-seq analysis methods
that also fit a negative binomial model, such as that implemented in
DESeq (Anders and Huber 2010), produced qualitatively comparable
results (Figure S5). Alternative methods, including DEGSeq (Wang
et al. 2010) and Myrna (Langmead et al. 2010), make overdispersion
assumptions less consistent with our data, whereas other methods,
including Cuffdiff, use an implementation specific to RNA-seq (Trap-
nell et al. 2013).

Previous studies have used measurements of the UPTAG and
DNTAG for each deletion mutant in different ways, including se-
lection of the barcode for each mutant with the highest count (Smith
et al. 2010) and independent analysis of each barcode (Gresham
et al. 2011). Because the UPTAG and DNTAG were measurements
of the same mutant, summing the counts within each sample pro-
vided a means of combining the information from both barcodes
while remaining robust to cases in which one barcode was lost. Fur-
thermore, with count data, summing across technical replicates pro-
vided a superior method for minimizing technical variation compared
with calculating an average value. Therefore, we summed UPTAGs
and DNTAGs for each mutant over technical replicates, such that
each condition had four biological replicates, and applied tests using
a negative binomial model to identify mutants that were significantly
different in abundance in YPGal compared with YPD after 24 hr of
growth. The 16 samples comprising this dataset included a total of 112
million reads.

Figure 3 Simulation analysis of variation
in experimental design. The effect of
read depth on (A) the number of mutants
found significant at FDR = 5%, (B) the
mean squared error between the esti-
mate of the log-fold change and the
value for the full experiment, (C) the
number of significant GO terms identi-
fied using a Wilcoxon rank-sum test at
FDR = 5%, and (D) the percentage of
significant genes that were not found to
be significant in the full experiment.
Curves are shown for the full experiment,
2 treatments · 4 biological replicates · 2
technical replicates, as well as for sub-
sampled 2 · 3 · 2, 2 · 2 · 2 experimental
designs (solid lines). Subsamplings were
also performed to simulate each experi-
mental design using a single technical
replicate (dashed lines). Each curve was
smoothed using a natural cubic spline.
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Analysis of our dataset identified 2036 mutants that were differen-
tially abundant between the two conditions at 5% FDR. The effect sizes
of individual gene deletions were widely distributed (Table S4 and
Figure 2A). Notably, the gene deletion mutants for 8 of the 11 genes
required for galactose metabolism (Timson 2007) were significantly
decreased in abundance in YPGal and mutants deleted for two genes
known to repress galactose metabolism were significantly increased in
abundance in YPGal (Figure 2A). Gene set enrichment analysis using
a Wilcoxon rank-sum test found 192 enriched gene sets at FDR of 5%,
and the top sets were related to respiration and mitochondrial processes,
consistent with the increased importance of respirative metabolism
when yeast cells grow in galactose (Table S5). Mutants identified as
significantly differing in abundance between YPGal and YPD were
identified across a range of sequence read depths, although smaller
effect sizes tended to be called statistically significant as read depth
increased (Figure 2B). The ability to detect significant changes in mu-
tant abundance was not greatly affected when total read counts were
more than 1000, and two-fold differences were still detected as statisti-
cally significant with total read depths as low as 100. These observations
suggest that we oversampled in our study and that similar results would
be obtained with approximately an order of magnitude fewer reads.

Effect of experimental design on statistical results
We aimed to identify the experimental design features that have the
greatest effect on the results of a Bar-seq experiment. In practice,
the experimental considerations that are most easily controlled are the
extent of biological and technical replication and the depth to which
each library is sequenced. We computationally simulated variation in
each of these experiment design parameters using random subsam-
pling of sequence reads from our complete experiment (Materials and
Methods). For the purpose of assessing results from these subsamples,
we compared them to results obtained from analysis of the complete
dataset, which we defined as the gold standard. The negative binomial
model we fit requires at least two biological replicates. Therefore, to
study the effect of biological replication, we simulated the use of
experimental designs using three or two biological replicates while
retaining two technical replicates for each sample. To study the effect
of technical replicates, we simulated the use of experimental designs
using one technical replicate for each of the biological replicates. For
each simulated experimental design, we sampled a subset of the reads
to simulate varying read depths. We considered four metrics that
assess the quality of each simulated experimental dataset: statistical
power; accuracy; informativeness; and FDR.

We assessed the power of each experimental design for differ-
ent sequence read depths by determining the number of mutants
identified as differentially abundant at FDR of 5%. In all cases, the
statistical power of each experimental design increased with read
depth; however, it rapidly saturated (Figure 3A). Considering our
full experimental design, it took just 1.7 million reads per condition
to detect half of the significant mutants that were detected using
the complete dataset and 75% were detected with 4.3 million reads
per condition. Mutants that are most differentially abundant could
be detected at very low read depths: the 13 most significant
mutants identified using the complete dataset were all identified
as significant even at the lowest depth tested, 140,000 mapped
reads (i.e., a 400-fold lower sequence read depth than the total), and
were ranked among the 15 most significant mutants in all but the
lowest read depth. Table S6 shows the effect size, significance, and
rank of the seven most significant galactose-related genes at each
level of subsampling, demonstrating that they remained highly
significant even at very low read depths.

Reducing the number of biological replicates results in reduced
statistical power for a given read depth. Using three biological re-
plicates rather than four decreases the statistical power by approxi-
mately 16%, and using only two biological replicates decreases it by
38%. In practice, this effect is far more relevant than the read depth:
10 million mapped reads using two biological replicates achieves ap-
proximately the same power as 2 million total reads across four
biological replicates, and the difference cannot be compensated by
increasing sequence read depth. Technical replicates only marginally
increase the power of the experimental design. This improvement
is because pooling multiple replicates decreases the noise added by
the library preparation and therefore decreases the within-treatment
variation, analogous to previously studied strategies of pooling mul-
tiple replicates on a single microarray (Peng et al. 2003; Kendziorski
et al. 2005).

Although the maximum power possible with each experimental
design differs, it is interesting to note that the point at which statistical
power begins to asymptote is very similar across experimental design,
at approximately 6 million reads per condition (Figure 3A). This
suggests that at this point, experimental noise attributable to the se-
quencing machine itself no longer decreases and additional variation
is attributable to noise introduced by biological variability and library
preparation. Statistical power varies within each subset of the designs
depending on which replicates were selected (Figure S6), indicating
that different replicates added different amounts of variance to the
experiment, which cannot be predicted a priori.

Figure 4 Statistical power varies with effect size and sequence read
depth. The effect of read depth on the proportion of genes identified
as significant (FDR = 5%) at different fold -change thresholds using 4
biological replicates · 1 technical replicate for each condition. The
fold change for each mutant determined from the full 4 biological
replicate · 2 technical replicate experiment is defined as the gold
standard. The solid curve shows the proportion of genes found signif-
icant relative to the total experiment, whereas the dotted and dashed
curves show the proportion of mutants that had at least a 1.5-fold or
a two-fold change, respectively. The horizontal dashed line indicates
the 90% power level.
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The utility of an experimental design can also be assessed in terms of
the accuracy with which effect sizes are estimated, as quantified by the
mean square error, the informativeness of the analysis, as quantified by
the number of significant gene sets identified by gene set enrichment
analysis, or the FDR, as quantified by the proportion of genes found
significant that are not significant in the full experiment. Assessments of
the quality of each experimental design considering accuracy (Figure
3B), informativeness (Figure 3C), and FDR (Figure 3D) show that the
greatest improvements are found with addition of biological replicates
and that improvements beyond 6 million reads per condition are min-
imal, regardless of experimental design. Although there is some varia-
tion in the point at which each metric ultimately saturates, the points at
which each metric begins to asymptote are highly concordant. Thus,
beyond a surprisingly low threshold of 6 million reads per condition,
additional sequencing depth provides little additional value.

Although pooled mutant screens enable simultaneous sensitive
measurement of the effect of each mutant, they are frequently used as
a means of identifying those mutants of greatest effect. We analyzed
the statistical power of an experimental design using four biological
replicates and no technical replication for different effect sizes (Figure
4). As few as 2.5 million sequence reads per condition (625,000 reads
per sample) are sufficient to detect 90% of mutants that change more
than two-fold in the full experiment. Increasing the read depth to 6
million reads per condition detects 96% of mutants that change more
than two-fold, 91% of all mutants that change more than 1.5-fold and
72% of all mutants that are significant in the full experiment.

DISCUSSION
High-throughput quantitative DNA sequencing has resulted in rapid
advances in a range of problems from the analysis of genome variation
to the three-dimensional organization of genomes. The coupling of
high-throughput quantitative sequencing with large-scale mutagenesis
(either systematic or random) enables the pooled analysis of mutant
phenotypes with broad applications, including the study of gene
function, drug targets, and genetic interactions. Here, we have studied
one realization of pooled mutant analysis, Bar-seq, with the goal of
determining experimental designs and analytical methods that provide
excellent levels of sensitivity, specificity, and efficiency.

We have shown that statistical models used for RNA-seq analysis
are directly applicable to the analysis of Bar-seq data. Tools for RNA-
seq analysis, such as those used here, are therefore readily adapted to
Bar-seq analysis, providing estimates of effect sizes and statistical
significance for each mutant. For Bar-seq analysis, UPTAGs and
DNTAGs represent additive measurements of the same genotype and
therefore should be summed for each sample. Similarly, technical
replicates should be combined by addition of barcode counts.

Biological replication is essential for rigorous assessment of
statistical significance. At least two biological replicates should always
be performed to use the within-treatment variation for determining
statistical significance. Some software packages have the option of
guessing the dispersion in advance, but this is not recommended be-
cause an incorrect estimate would make subsequent tests for statisti-
cal significance either too conservative or too generous. Moreover,
we have found that different experiments can contribute different
amounts of variation. Therefore, we recommend performing at least
four biological replicates to maximize statistical power and accuracy of
effect size. The use of technical replicates of biological replicates results
in marginal improvements and is likely unnecessary.

Importantly, we found that Bar-seq does not require a high read
depth to accurately detect differential abundance of mutants and that
additional reads add little to the results. In our study using nearly 60

million mapped reads per condition to analyze 4295 mutants, we
demonstrated that the quality of our dataset was maintained with
approximately 10-fold fewer reads. Our experimental method for Bar-
seq includes 120 uniquely indexed adaptors (Table S2), meaning that
on a 200-million read sequencing lane, one can analyze four biological
replicates of 30 different conditions, resulting in approximately 6
million reads per condition. Based on our analysis, that read depth
would be expected to identify 96% of genes with a two-fold change,
91% of mutants with a 1.5-fold change, and 72% of all mutants that
would be detected with 10-times greater read depth and two technical
replicates (Figure 4). These findings can be extended to other methods
for pooled genetic screens by noting that it corresponds to �1400
reads per genomic target per condition. Increasing sequence read
depth beyond this value provides only an incremental increase.
Thus, our analysis provides guidelines about the tradeoff between
per-condition read depth and statistical power that can be used for
the design of future experiments.
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