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ABSTRACT High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and
characterization of the recombination landscape of a species’ genome. Genomic resources for Atlantic
salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide poly-
morphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference
genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a
pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the ‘ssalar01’ high
density SNP array. The number of SNPs per group showed a high positive correlation with physical chro-
mosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally
consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference
genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was
lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions.
Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized
according to their predicted function, including annotation of �2500 putative nonsynonymous variants.
The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated
with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of
salmon, and provides a useful resource for salmonid genetics and genomics research.
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Linkagemapsarevaluable tools for the investigationof thegeneticbasisof
complex traits in farmed animal species. For several decades, linkage
maps have enabled the mapping of quantitative trait loci (QTL), and
formed the basis of attempts at positional cloning of these QTL in both

terrestrial (Goddard and Hayes 2009) and aquatic farmed species
(Danzmann and Gharbi 2001). High throughput sequencing technolo-
gies have now expedited the discovery of millions of single nucleotide
polymorphism (SNP) markers (Liu 2010). These SNPs form the basis of
modern, high-resolution genetics studies, and underpin genomic selec-
tion for faster genetic improvement in terrestrial livestock, and, laterally,
aquaculture breeding programs (Meuwissen et al. 2001; Goddard et al.
2010; Sonesson 2010; Yáñez et al. 2014, 2015). Scoring of genome-wide
SNPs in large populations is achieved either through genotyping by
sequencing (Davey et al. 2011), or by creation and application of SNP
arrays (e.g., Houston et al. 2014a; Yáñez et al. 2016). High density
linkage maps based on these SNP datasets can aid in high resolution
mapping of loci underpinning complex traits in farmed animals (e.g., Shi
et al. 2014; Wang et al. 2015), improvements in assembly of reference
sequences (Fierst 2015), and knowledge of the recombination landscape
of the genome (e.g., Groenen et al. 2009; Tortereau et al. 2012).
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Reference genome assemblies are now available for several aquacul-
ture species, including Atlantic salmon (Davidson et al. 2010; Lien et al.
2016). Once anchored and annotated, these genome assemblies provide
invaluable physical maps of the genome. Due to a recent whole genome
duplication, and the relatively high frequency of long and diverse repeat
elements (de Boer et al. 2007; Davidson et al. 2010; Lien et al. 2016),
assembly of the Atlantic salmon genome has been challenging, with
�22% of the current assembly (NCBI GCA_000233375.4) yet to be
assigned to chromosome. Salmonid species exhibit marked hetero-
chiasmy, with males showing very low recombination rates across
much of the genome, but with much higher recombination rates
thought to occur in telomeric regions (e.g., Sakamoto et al. 2000;
Lien et al. 2011; Miller et al. 2011; Brieuc et al. 2014; Gonen et al.
2014). This phenomenon may be related to the pairing and recombi-
nation between homeologous regions of the genome, particularly in
males (Wright et al. 1983; Allendorf and Thorgaard 1984; Allendorf
et al. 2015). Several high density SNP arrays exist for Atlantic salmon
(Houston et al. 2014a; Yáñez et al. 2016), and integrated linkage maps
based on those arrays would facilitate detailed interrogation of the un-
usual recombination landscape. Further, while the high density SNP
arrays have been applied for genome-wide association study (GWAS)

and genomic prediction (Ødegård et al. 2014; Correa et al. 2015; Tsai
et al. 2015; Tsai et al. 2016), such studies would be enhanced by anno-
tation of the SNPs according to their genomic position, nearby genes,
and their predicted effects.

Therefore, the purposes of this study were: (i) to construct a linkage
map of the SNPs contained on the publicly available high density
Affymetrix Atlantic salmon SNP array ‘ssalar01’ (Houston et al.
2014); (ii) to align and compare the linkage map to the latest Atlantic
salmon reference genome assembly (GenBank assembly accession
GCA_000233375.4); (iii) to assign previously unmapped reference ge-
nome contigs and genes to chromosomes; (iv) to investigate and com-
pare patterns of male and female recombination across the genome;
and (v) to annotate the SNPs according to their position relative to
putative genes, including prediction of variant effects.

MATERIALS AND METHODS

Animals
The population used for the linkage analysis was a subset of those
described in Gharbi et al. (2015), purchased from Landcatch Natural
Selection (LNS, Ormsary, UK). The juvenile fish used in the current

n Table 1 The characteristics of the physical and genetic maps of the 29 Atlantic salmon (pairs of) chromosomes
(GenBank reference GCA_000233375.4; Davidson et al. 2010)

Male Female

Chr. SNPs
Physical

Length (MB)a
Physical Length of

Unassigned Contigs (MB)a Max (cM) Correlationb Max (cM) Correlationb

1 6080 159 1.6 428.8 0.97 551.3 0.98
2 3506 73 3.1 173.5 0.80 404.4 0.85
3 4013 93 2.2 332.2 0.84 467.7 0.96
4 4173 82 1.1 156.6 0.82 183.6 0.95
5 3916 81 1.9 274.4 0.91 529.9 0.93
6 4073 87 2.3 264.2 0.88 689.1 0.89
7 2875 59 1.2 183.7 0.85 249.0 0.97
8 1128 26 0.6 181.6 0.87 326.4 0.97
9 4774 142 1.7 278.8 0.77 392.2 0.81

10 4146 116 0.9 82.8 0.79 166.8 0.97
11 3953 94 2.8 166.2 0.79 291.0 0.81
12 4321 92 2.6 95.7 0.80 239.5 0.80
13 4472 108 1.3 178.0 0.62 213.8 0.91
14 3878 94 1.4 96.4 0.73 123.5 0.92
15 4335 104 1.9 77.3 0.64 136.9 0.91
16 3316 88 2.3 141.9 0.80 137.7 0.90
17 2607 58 2.0 171.2 0.90 307.2 0.96
18 3196 71 1.4 91.7 0.85 105.9 0.92
19 3210 83 1.5 74.5 0.76 103.2 0.90
20 3687 87 1.5 96.5 0.82 112.5 0.93
21 2355 58 0.7 93.2 0.80 159.1 0.84
22 2634 63 0.4 73.6 0.74 78.0 0.88
23 2670 50 0.6 77.5 0.65 84.4 0.96
24 2538 49 0.3 379.0 0.91 458.2 0.97
25 2332 51 0.7 147.0 0.92 175.3 0.96
26 2063 48 2.2 166.2 0.92 161.8 0.95
27 2458 44 0.4 73.3 0.72 72.6 0.91
28 1878 40 0.7 143.1 0.94 156.0 0.99
29 1809 42 0.6 70.2 0.73 76.4 0.88
Total 96,396 2242 41.9 4769.0 — 7153.2 —

Avg 3324 77 1.4 164.5 0.81 246.7 0.92
a
The physical length is taken from the latest Atlantic salmon genome assembly [GenBank reference GCA_000233375.4 (Davidson et al.
2010)], and ‘unassigned contigs’ are those that were unplaced on the reference assembly but mapped to the chromosome in the linkage
map.

b
The correlation between the genetic distance of SNPs (cM) on the linkage map and the physical distance (bp) according to the reference
genome assembly.
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study were from the 2007 year group of the LNS broodstock, and were
from 60 full sibling families (28 sires and 60 dams) comprising at least
six progeny per family. The trial (which focused on resistance to sea
lice) was performed by Marine Environmental Research Laboratory
(Machrihanish, UK), and under approval of ethics review committee
in the University of Stirling (UK). Full details of the trial, and the
population used, have been described previously (Houston et al.
2014b; Gharbi et al. 2015; Tsai et al. 2015, 2016).

SNP array genotyping
GenomicDNA from each samplewas extracted (Qiagen, Crawley, UK),
and genotyped for the ‘ssalar01’ Affymetrix Axiom SNP array contain-
ing �132,000 validated SNPs. Details of the creation and testing of the
SNP array are given in Houston et al. (2014a). Details of the quality
control filtering of the genotypes are given in Tsai et al. (2015). Briefly,
the Plink software was used to filter the validated SNPs by removing
individuals and SNPs with excessive (. 1%) Mendelian errors, and
SNPs with minor allele frequency (MAF) , 0.05 in this dataset. In
total, 111,908 SNPs were retained for 622 fish (534 offspring, 28 sires,
and 60 dams). Details of all the SNP markers are available at dbSNP
(Sherry et al. 2001) (NCBI ss# 947429275–947844429.)

Linkage analysis
Lep-Map2 (Rastas et al. 2016) was used to construct the linkage maps.
The ‘Filtering’ function was applied to the initial input dataset, with
‘MAFLimit’ set at 0.05 (consistent with filtering described above), and
‘dataTolerance’ set at 0.001 to remove markers exhibiting significant
segregation distortion. The ‘SeparateChromosomes’ function was ap-
plied to cluster markers into linkage groups, with the LOD threshold of
36 applied (chosen because this is the level at which 29 groups were
formed, consistent with the expected karyotype of European Atlantic
salmon). The function ‘JoinSingles’ was applied to assign additional

single SNPs to existing linkage groups. Subsequently, the function
‘OrderMarkers’ was applied to estimate the marker order within each
linkage group. Using parallelized computing, this step was repeated
several times to assess consistency of marker order between replicates.
Sex-specific linkage maps were generated because of the known differ-
ence in recombination rate between male and female Atlantic salmon
(Gilbey et al. 2004;Moen et al. 2004; Lien et al. 2011; Gonen et al. 2014).
To compare the genetic and physical maps, the flanking sequence for
each SNP locus (35 bp either side) was aligned with the Atlantic salmon
reference genome assembly (GenBank assembly GCA_000233375.4)
(Davidson et al. 2010), and only complete and exact matches to the
reference genome (e-value = 3 · 10229) were retained. In cases
where the SNP flanking sequence aligned exactly with. 1 genomic
region, the alignment corresponding to the chromosome that was
consistent with the linkage mapping of the SNP was retained.

RNA sequencing
Atlantic salmon fry samples from two different families from the Scottish
breeding nucleus of Landcatch Natural Selection Ltd were selected for
RNA sequencing, corresponding to families ‘B’ and ‘S’ in Houston et al.
(2010). Full details of the library preparation and sequencing are given in
Houston et al. (2014a) (although for the current study, only two of the
three families previously sequenced were used for assembling the tran-
scriptome. This was because the third family, ‘C’, had large variation in
sequence coverage between samples). Briefly, a total of 48 individual fry
were homogenized in 5 ml TRI Reagent (Sigma, St. Louis, MO) using a
Polytron mechanical homogenizer (Kinemetica, Switzerland). The RNA
was isolated from 1 ml of the homogenate, using 0.5 vol of RNA pre-
cipitation solution (1.2 mol/l sodium chloride; 0.8 mol/l sodium citrate
sesquihydrate), and 0.5 vol isopropanol. Following resuspension in
nuclease-free water, the RNA was purified using the RNeasy Mini kit
(Qiagen, UK). The RNA integrity numbers from the Bioanalyzer

Figure 1 Comparison of the number of SNPs
in corresponding chromosomes and physical
length retrieving from recent reference assembly
(GenBank assembly reference GCA_000233375.4,
Davidson et al. 2010). The correlation was approx-
imately 0.95.

Figure 2 A comparison between genetic and
physical maps of a representative chromosome
(Chr 22), reflecting the recombination pattern
difference between males and females. Details
of genetic distance and physical distance for all
mapped loci are given in File S1.
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2100 (Agilent, Santa Clara, CA)were all over 9.9. Thereafter, the Illumina
Truseq RNA Sample Preparation kit v1 protocol was followed directly,
using 4 mg of RNA per sample as starting material. Libraries were
checked for quality, and quantified using the Bioanalyzer 2100 (Agilent),
before being sequenced in barcoded pools of 12 individual fish on the
Illumina Hisequation 2000 instrument (100 base paired-end sequencing,
v3 chemistry); all sequence data were deposited in the European Nucle-
otide Archive under accession number ERP003968.

Transcriptome assembly
The quality of the sequencing output was assessed using FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/; version 0.11.2).
Qualityfiltering and removal of residual adaptor sequenceswas conducted
on read pairs using Trimmomatic v.0.32 (Bolger et al. 2014). Specifically,
residual Illumina specific adaptors were clipped from the reads, leading
and trailing bases with a Phred score less than 15 were removed, and the
read trimmed if a sliding window average Phred score over four bases was
less than 20. Only paired-end reads where both sequences had a length
greater than 36 bases postfiltering were retained. The most recent salmon
genome assembly (ICSASG_v2, NCBI assembly GCA_000233375.4) was
used as a reference for read mapping. Filtered reads were mapped to the
genome using Tophat2 v. 2.0.12 (Kim et al. 2013), which leverages the
short read aligner Bowtie2 v.2.2.3 (Langmead and Salzberg 2012), allowing
a maximum of two mismatches. Using Cuffdiff v.2.2.1 (Trapnell et al.
2012), the aligned reads were merged into a transcriptome assembly. The
transcriptome was annotated against NCBI nonredundant protein and
nucleic acid databases using local Blast v.2.3.0+ (Altschul et al. 1997) with
a cut-off e-value of 1025. The completeness of the salmon transcriptome
was evaluated using Blast searches with a cut-off e-value of 10225 against a
set of 248 core eukaryotic genes (Parra et al. 2007).

SNP annotation
For every gene, themost highly expressed transcript variantwas selected
to identify candidate coding regions using Transdecoder v.2.0.1 (http://
transdecoder.sourceforge.net/). Open reading frames (ORF) were pre-
dicted for every transcript, requiring aminimum of 100 amino acids (to
reduce the number of potential false positives). All the predicted pro-
teins were aligned against the manually curated UniRef90 database
using local Blast v.2.3.0+ (Altschul et al. 1997) with a cut-off e-value
of 1025, discarding ORFs without positive matches. Finally, the longest
ORF was selected as the canonical protein for each transcript. The final
set of coding regions was used to build a genome annotation file which
was used to predict the functional significance of all the SNPs on the
‘ssalar01’ SNP array using SnpEff v.4.2 (Cingolani et al. 2012).

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS AND DISCUSSION

Linkage map construction
Apedigreedpopulationof622 individualAtlantic salmon(534offspring,
28sires, and60dams)were successfullygenotypedusing thehighdensity
Affymetrix SNP array ‘ssalar01’ (Houston et al. 2014a). SNPs were
assigned to putative linkage groups, and then ordered on each linkage
group using Lep-Map2 (Rastas et al. 2016). A total of 111,908 SNPs was
retained following QC filtering, of which 96,396 (86%) were assigned
and ordered on the 29 linkage groups (which correspond to the kar-
yotype of European Atlantic salmon). The number of SNPs per chro-
mosome varied from 1128 to 6080, and was positively correlated with
the number of SNPs per chromosome in previously published Atlantic
salmon SNP linkage maps of Lien et al. (2011) (r = 0.94), and Gonen
et al. (2014) (r = 0.87). The flanking sequences of the SNPs on the
linkage map were aligned to the salmon reference genome assembly
(GCA_000233375.4) to determine their putative physical position
(Supplemental Material, File S1). There was a high positive correlation
between the genetic map position and the reference sequence position
of the SNPs (Table 1), and the number of SNPs per chromosome was
dependent on chromosome sequence length (Figure 1). SNP density for
the successfully genotyped and mapped markers from the ‘ssalar1’
array is relatively constant across the genome, with an average of
1 SNP per �23 kb in the assembled chromosomes, and 1 SNP per
0.05 cM (male) and 0.07 cM (female) in the full linkage map.

The most recent Atlantic salmon reference genome assembly
(GCA_000233375.4) contains 2240 MB of sequence contigs anchored
to chromosomes (78% of total assembly), and 647 MB of contigs that
are not yet assigned to chromosome (22% of total assembly). Linkage
mapping using high density SNP arrays was applied to orientate refer-
ence genome contigs and scaffolds, and to identify putative misassem-
blies in the recently published salmon genome paper (Lien et al. 2016).
However, those linkage maps are unpublished. In the current study, a
total of 4581 previously unassigned contigs comprising 41.9 MB of
sequence was tentatively mapped to the 29 salmon chromosomes
(Table 1 and File S2). While additional experiments would be required
to confirm the correct position of these genome contigs, this linkage
map has enabled an additional �1% of the entire reference genome
assembly to be tentatively mapped to chromosomes, corresponding to
�6.5% of the previously unassigned genome assembly. These contigs
were spread across all 29 chromosome pairs (Table 1, and details given

Figure 3 A comparison of male and female recombination level
(cM/Mb) graphed according to physical distance from the nearest
chromosome end (expressed as a percentage of total chromosome
size in megabases).

n Table 2 Summary statistics for the Atlantic salmon RNA-seq
transcriptome assembly

Transcriptome assembly details Number

Transcripts 202,009
Genes 65,803
Single transcript genes 36,846
Multi-transcript genes 28,957
Genes in assembled chromosomes 53,950
Genes in unassigned contigs 11,853
Average transcript length 4127
N50 5710
N90 2323
Transcripts . 500 bp 195,224
Genes annotated using protein database 58,416
Genes annotated using DNA database 2732
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in File S1). Novel potentially misassembled regions were also identified
in the reference sequence via regions of discordance between the link-
age and physical maps, an example of which is between�11.5 MB and
11.8 MB on Chromosome 26 (File S3).

There were substantial differences in the patterns of recombination
between the sexes. The female linkage map covered 7153 cM (ranging
from 72.6 to 689.0 cM per chromosome), whereas the male linkagemap
covered 4769 cM (ranging from 70.2 to 428.8 cM per chromosome)
(Table 1). Overall, the femalemapwas�1.5 · longer than themalemap,
consistent with previous Atlantic salmon SNP linkage maps (Lien et al.
2011; Gonen et al. 2014). The pattern of recombination across the ge-
nome was notably different between the sexes, with female recombina-
tion rates being higher across much of the genome, except for some
subtelomeric regions where male recombination was substantially higher
(e.g., Figure 2). This phenomenon has been observed in several previous
salmonid linkage maps (Sakamoto et al. 2000; Lien et al. 2011; Miller

et al. 2011; Brieuc et al. 2014; Gonen et al. 2014), but the availability of the
reference genome enables a more detailed investigation. Therefore, link-
age and physical maps were aligned, and a proxy of recombination rate
(number of centimorgans per megabase) was estimated at regular inter-
vals on each chromosome, with each interval corresponding to 2% of the
total chromosome’s physical length. The average recombination rate for
each corresponding interval on the 29 chromosomes was calculated and
graphed against the distance from the nearest telomere (Figure 3). The
results highlight the phenomenon of markedly high male recombination
in some subtelomeric regions, on average �10 · higher than regions of
the genome nearer the middle of the chromosome (Figure 3).

Transcriptome assembly and annotation
To annotate the mapped SNPs and predict their function according to
their position relative to putative genes, an annotated reference tran-
scriptome was created. RNA-seq of 48 individual salmon fry yielded

n Table 3 Predicted numbers, location and effect of the mapped SNPs according to their position on the annotated reference genome

Summary of annotated SNPs

Intergenic 57,582
Genic 48,842 UTR 8091 59 1867

39 6224
Intron 34,534 Splice region 483

Nonsplice region 34,051
Exon 5856 Synonymous 3352

Nonsynonymous 2465
Gain or loss of start/stop codon 39

n Table 4 Number of predicted genes and functional categories of SNPs split according to chromosome

Genes and SNPs per Chromosome

Chromosome Genes Exonic SNPs Intronic SNPs UTR SNPs Intergenic SNPs

1 3507 181 877 206 4717
2 2711 222 1116 284 1630
3 2741 225 1209 312 2026
4 2255 246 1301 309 2066
5 2286 220 1184 299 2030
6 2441 217 1286 312 2006
7 1526 152 928 192 1455
8 875 44 335 67 525
9 3062 244 1415 374 2563

10 2568 217 1341 300 2140
11 2308 162 1168 249 2207
12 2672 268 1398 349 2088
13 2524 276 1516 328 2181
14 2343 236 1154 314 2034
15 2400 271 1415 294 2138
16 2205 193 1003 253 1721
17 1770 144 744 206 1307
18 1767 142 1041 205 1654
19 1694 125 1013 203 1743
20 2072 211 1093 257 1830
21 1056 129 700 160 1252
22 1398 153 811 189 1416
23 1138 142 863 192 1400
24 1040 146 860 187 1238
25 1032 113 585 133 1431
26 1372 102 606 128 1082
27 1096 129 828 195 1221
28 912 92 593 147 992
29 821 88 598 120 937
Total 55,592 5090 28,981 6764 51,030
Avg 1917 176 999 233 1760
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927 M raw paired-end sequence reads, of which 93% remained after
trimming and filtering. Filtered reads were aligned to the most recent
Atlantic salmon reference genome assembly (GCA_000233375.4;
82.2% concordant pair alignment) to generate a reference transcriptome.
The alignment resolved 202,009 putative transcripts corresponding to
65,803 putative genes, consisting of 36,846 single transcript genes,
and 28,957 multi-transcript genes (Table 2 and File S4). The average
length of the transcripts was 4127 bp, with an N50 of 5710, an N90 of
2323, and . 90% of transcripts longer than 500 bp. The assembled
transcripts were annotated using BLASTx and BLASTn searches
against the NCBI nonredundant protein and nucleic acid databases, re-
spectively. Of the 65,803 total putative genes, 58,416 (88.8%) showed
significant similarity to known proteins, while an additional 2732
(4.2%) showed significant similarity to nucleotide entries in the NCBI
nonredundant nucleotide database (File S5). The proportion of unanno-
tated genes was higher for the shorter transcript sequences (File S6), but
all transcripts were retained (since a relevant minimum size threshold
was not apparent). The completeness of the transcriptome was evaluated
against a set of 248 core eukaryotic genes described in Parra et al. (2007);
247 of these genes were found in our transcriptome (BLASTn
e-value , E10225), 222 of which had at least 90% coverage, and
153 of which were fully covered. A total of 53,950 identified genes was
located within chromosomes on the Atlantic salmon genome assembly,
while the remaining 11,853 were aligned to unassigned contigs. Of these
11,853 genes, 1647 (13.9%) were located in contigs assigned to chromo-
somes using the linkage map of the current study (Table 1 and File S7).

SNP annotation
The RNA-seq based transcriptome described above was used to predict
ORFs and protein sequences in order to annotate the SNPs present on the
‘ssalar01’ array (Table 3 and File S8). A total of 106,424 SNPs (95%)
matched a single genome location, while 2857 SNPs matched two differ-
ent genomic positions, related in part to the salmonid specific genomic
duplication. An additional 880 SNPs mapped to three or more genome
locations, indicative of repetitive elements or protein domains. It should
be noted that filtering of SNPs during the design process for the array
would have removed the majority of SNPs mapping to two or more
locations (Houston et al. 2014a). The tentative annotation of all SNPs
is given (File S6), but only those mapping to unique genomic regions are
described below. Of these 106,424 unique SNPs, 48,842 (45.9%) were
located in putative genes, with the remainder mapping to intergenic
regions. Of the genic SNPs, themajority were in putative intronic regions
(34,534; 70.7%), although 483 of these were associated with splicing
regions, and therefore have a higher likelihood of being functionally
relevant. The remaining genic SNPs were mapped to putative untrans-
lated regions (UTRs; 8091), with a larger amount of SNPs in the 39-UTR
as expected (6224 vs. 1867 in the 59-UTR); and to putative exons (5856).
A total of 2465 putative nonsynonymous SNPswas identified, in addition
to 39 SNPs predicted to cause gain/loss of start/stop codons, which have a
high likelihood of functional consequences (File S8). As an example, a
premature stop codon was found in phospholipase D, an enzyme which
produces the signal molecule phosphatidic acid, which is also a precursor
for the biosynthesis of many other lipids (McDermott et al. 2004). The
distribution of the SNP functional categories across the 29 chromosome
pairs is given in Table 4. It is important to note that these predicted SNP
effects will contain a proportion of false positives due to inevitable errors
in the predicted structure of the genes. Nonetheless, their annotation
combined with their linkage and physical mapping provides a valuable
resource for users of the high density ‘ssalar01’ array in particular, and for
salmonid genomics researchers in general.

Conclusion
A linkagemap comprising. 96,000 SNPs from the ‘ssalar01’ array was
created, annotated, and integrated with the reference genome assembly.
This represents the highest density SNP linkage map for any salmonid
species. Alignment of the linkage and physical maps revealed good
agreement between genetic map, and the mapping allowed a further
circa 1% of the salmon reference genome assembly to be tentatively
assigned to chromosomes. Marked heterochiasmy was observed, with
male recombination rate substantially lower than females across much
of the genome, but with a notably high level in some subtelomeric
regions. Finally, the mapped SNPs were annotated and categorized
according to their predicted function. The map will be another useful
resource for salmonid genomics research.
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