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ABSTRACT Plants obtain soil-resident elements that support growth and metabolism from the water-flow
facilitated by transpiration and active transport processes. The availability of elements in the environment
interacts with the genetic capacity of organisms to modulate element uptake through plastic adaptive
responses, such as homeostasis. These interactions should cause the elemental contents of plants to vary
such that the effects of genetic polymorphisms will be dramatically dependent on the environment in which
the plant is grown. To investigate genotype by environment interactions underlying elemental accumu-
lation, we analyzed levels of elements in maize kernels of the Intermated B73 · Mo17 (IBM) recombinant
inbred population grown in 10 different environments, spanning a total of six locations and five different
years. In analyses conducted separately for each environment, we identified a total of 79 quantitative trait
loci (QTL) controlling seed elemental accumulation. While a set of these QTL was found in multiple envi-
ronments, the majority were specific to a single environment, suggesting the presence of genetic by
environment interactions. To specifically identify and quantify QTL by environment interactions (QEIs),
we implemented two methods: linear modeling with environmental covariates, and QTL analysis on trait
differences between growouts. With these approaches, we found several instances of QEI, indicating that
elemental profiles are highly heritable, interrelated, and responsive to the environment.

The intake, transport, and storage of elements are key processes un-
derlying plant growth and survival. A plant must balance mineral levels
to prevent accumulation of toxic concentrations of elements, while
taking up essential elements for growth. Food crops must strike similar
balances to provide healthy nutrient contents of edible tissues. Adap-
tation to variation in soil, water, and temperature requires that plant
genomes encode flexible regulation of mineral physiology to achieve

homeostasis (McDowell et al. 2013). This regulationmust be responsive
to both the availability of each regulated element in the environment
and the levels of these elements at the sites of use within the plant.
Understanding how the genome encodes responses to element limita-
tion or toxic excess in nutrient-poor or contaminated soils will help to
achieve targeted crop improvements and sustain our rapidly growing
human population (Cobb et al. 2013).

The concentrations of elements in a plant sample provide a useful
read-out for the environmental, genetic, and physiological processes
important for plant adaptation. We and others developed high-
throughput and inexpensive pipelines to detect and quantitate
20 different elemental concentrations by inductively coupled plasma
mass spectrometry (ICP-MS). This process, termed ionomics, is the
quantitative study of the complete set of mineral nutrients and trace
elements in an organism (its ionome) (Lahner et al. 2003). In crop
plants such as maize and soybean, seed element profiles make an
ideal study tissue, as seeds provide a read-out of physiological status
of the plant and are the food source.
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Quantitative genetics using structured recombinant inbred popula-
tions is a powerful tool for dissecting the factors underlying elemental
accumulation and relationships. By breaking up linkage blocks through
recombination and then fixing these new haplotypes of diverse loci into
mosaic sets of lines, these populations allow similar sets of alleles to be
repeatedly tested in diverse environments (Koornneef et al. 1997). A
variety of quantitative statistical approaches can then be used to identify
quantitative trait loci (QTL) by environment interactions (QEI).

Here, we used elemental profiling of a maize recombinant inbred
population grown in multiple environments to identify QTL and QEI
underlyingelemental accumulation.Wesoughtbothenvironmentaland
genetic determinants by implementing single-environment QTL map-
ping and analyses of combined data from multiple environments.
Overall, we detected 79 loci controlling elemental accumulation, many
of which were environment-specific, and identified loci exhibiting
significant QEI.

MATERIALS AND METHODS

Population, Field Growth, and Data Collection
Subsets of the Intermated B73 · Mo17 (IBM) recombinant inbred
population were grown in 10 different environments: Homestead,
Florida in 2005 (220 lines) and 2006 (118 lines), West Lafayette, Indi-
ana in 2009 (193 lines) and 2010 (168 lines), Clayton, North Carolina
in 2006 (197 lines), Poplar Ridge, New York in 2005 (256 lines),
2006 (82 lines), and 2012 (168 lines), Columbia, Missouri in
2006 (97 lines), and Limpopo, South Africa in 2010 (87 lines). In all
but three environments, NY05, NC06, and MO06, one replicate was
sampled per line. In NY05, three replicates of 199 lines, two replicates
of 50 lines, and one replicate of seven lines were sampled. A replicate is
considered pooled ears from a row. Several ears were harvested and
kernels were subsampled from pooled ears from the row. After harvest-
ing, seeds were stored in local temperature and humidity controlled
seed storage rooms. Subsequently they were shipped to the ionomics
laboratory, where they were stored in temperature-controlled condi-
tions. Because each batch of seed was treated identically, any losses in
weight or increases in weight due to differing hydration should not
affect the relative, weight-adjusted concentrations used for analysis.We
do not expect any changes in ion composition due to storage. Supple-
mental Material, Table S1 includes planting dates and line numbers
after outlier removal and genotype matching. After outlier removal,
199 of the 233 unique lines in the experiment were present in three or
more of the 10 environments. 106 lines were present in seven or more
of the environments.

Elemental profile analysis
Elemental profile analysis is conducted as a standardized pipeline in the
Baxter laboratory. The methods used for elemental profile analysis are
as described in Ziegler et al. (2013). Descriptions taken directly are
denoted by quotation marks.

Sample preparation and digestion: Lines from the IBM population
from each environment were analyzed for the concentrations of 20 el-
ements. “Seeds were sorted into 48-well tissue culture plates, one seed
per well. A weight for each individual seed was determined using a
custom built weighing robot. The weighing robot holds six 48-well
plates and maneuvers each well of the plates over a hole which opens
onto a three-place balance. After recording the weight, each seed was
deposited using pressurized air into a 16 · 110 mm borosilicate glass
test tube for digestion. The weighing robot can automatically weigh
288 seeds in �1.5 hr with little user intervention.”

“Seeds were digested in 2.5 ml concentrated nitric acid (AR Select
Grade, VWR) with internal standard added (20 ppb In, BDH Aristar
Plus). Seeds were soaked at room temperature overnight, then heated to
105� for 2 hr. After cooling, the samples were diluted to 10 ml using
ultrapure 18.2 MV water (UPW) from a Milli-Q system (Millipore).
Samples were stirred with a custom-built stirring rod assembly, which
uses plastic stirring rods to stir 60 test tubes at a time. Between uses, the
stirring rod assembly was soaked in a 10% HNO3 solution. A second
dilution of 0.9 ml of the 1st dilution and 4.1 ml UPWwas prepared in
a second set of test tubes. After stirring, 1.2 ml of the second dilution
was loaded into 96 well autosampler trays.”

Ion coupled plasma mass spectrometry analysis: Elemental concen-
trationsofB,Na,Mg,Al, P, S,K,Ca,Mn,Fe,Co,Ni,Cu,Zn,As, Se,Rb, Sr,
Mo, and Cd “were measured using an Elan 6000 DRC-e mass spec-
trometer (Perkin-Elmer SCIEX) connected to a PFA microflow nebu-
lizer (Elemental Scientific) and Apex HF desolvator (Elemental
Scientific). Samples were introduced using a SC-FAST sample introduc-
tion system and SC4-DX autosampler (Elemental Scientific) that holds
six 96-well trays (576 samples).” Measurements were taken with dy-
namic reaction cell (DRC) collision mode off. “Before each run, the lens
voltage and nebulizer gas flow rate of the ICP-MS were optimized for
maximum Indium signal intensity (.25,000 counts/sec) while also
maintaining low CeO+/Ce+ (,0.008) and Ba++/Ba+ (,0.1) ratios. This
ensures a strong signal while also reducing the interferences caused by
polyatomic and double-charged species. Before each run a calibration
curve was obtained by analyzing six dilutions of a multi-element stock
solution made from a mixture of single-element stock standards (Ultra
Scientific). In addition, to correct for machine drift both during a single
run and between runs, a control solution was run every tenth sample.
The control solution is a bulk mixture of the remaining sample from the
second dilution. Using bulked samples ensured that our controls were
perfectly matrix matched and contained the same elemental concentra-
tions as our samples, so that any drift due to the sample matrix would be
reflected in drift in our controls. The same control mixture was used for
every ICP-MS run in the project so that run-to-run variation could be
corrected. A run of 576 samples took�33 hr with no user intervention.
The time required for cleaning of the instrument and sample tubes as
well as the digestions and transfers necessary to set up the run limit the
throughput to three 576 sample runs per week.”

Computational analysis

Drift correction and analytical outlier removal: Analytical outliers
were removedfromsingle-seedmeasurementsusingamethoddescribed
by Davies and Gather (1993). Briefly, values were considered an outlier
and removed from further analysis if the median absolute deviation
(MAD), calculated based on the line and location where the seed was
grown, was .6.2.

Normalization for seed weight by simply dividing each seed’s solu-
tion concentration by sample weight resulted in a bias where smaller
seeds often exhibited a higher apparent elemental concentration, espe-
cially for elements whose concentration is at or near the method de-
tection limit. This bias is likely either a result of contamination during
sample processing, a systematic over or under reporting of elemental
concentrations by the ICP-MS, or a violation of the underlying assump-
tion that elemental concentration in seeds scales linearly with seed
weight. Instead, we developed a method taking residuals from the
following linear model:

Y ¼ b0 þ b1X1 þ b2X2 þ e
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where Y is the nonweight normalized measure of elemental concen-
tration for each seed after digestion, b0 is the population mean, X1 is
the seed weight, X2 is the analytical experiment the seed was run in (to
further correct for run-to-run variation between analytical experi-
ments), and e is the residual (error) term. The residuals in this linear
model represent how far each data point departs from our assump-
tion that analyte concentration will scale linearly with sample weight.
If all samples have the same analyte concentration then the linear
model will be able to perfectly predict analyte concentration from
weight and the residuals will all equal zero. However, if a sample
has a higher or lower concentration of an analyte than the general
population being measured, then it will have a residual whose value
represents the estimated concentration difference from the popula-
tion mean. For this reason, we have termed this value the estimated
concentration difference from the mean (ECDM).

Heritability calculation: Broad-sense heritability was calculated for
seed weight and 20 elements across environments and within three
environments for which we had substantial replicate data. To esti-
mate the broad-sense heritability across 10 environments, the total
phenotypic variance was partitioned into genetic and environmental
variance, with the broad-sense heritability being the fraction of
phenotypic variance that is genetic. This was done using an un-
balanced, type II ANOVA in order to account for the unbalanced
common line combinations across environments. Two models were
fit using the lmfit function in R. The first model included genetic
variance as the first term, and environmental variance as the second.
The second model had the opposite form. The variances for genetic
or environmental components were obtained using the ANOVA
function on the model in which that component was the second
term. Broad-sense heritability was calculated by dividing the genetic
variance by the total (genetic plus environmental plus residuals)
variance. Heritability was calculated within environments for
NY05, NC06, and MO06. Data with outliers designated as NA was
used for each environment. For each element within an environ-
ment, lines with NA were removed, and lines with only one replicate
were removed, leaving only lines with two or more replicates. The
heritability was then calculated for seed weight and each element
using the lmfit and anova functions to obtain the variances for the
genetic component and the residuals. Broad-sense heritability was
calculated as the proportion of total variance (genetic plus residuals)
explained by the genetic component.

QTL mapping and elemental traits: The R package R/qtl was used
for QTL mapping. For each of the 10 environments, elemental trait
line averages and genotypes for all lines, 4217 biallelic single nucle-
otide polymorphisms (SNPs) distributed across all 10 maize chro-
mosomes, were formatted into an R/qtl cross object. The stepwiseqtl
function was used to implement the stepwise method of QTL model
selection for 21 phenotypes (seed weight, 20 elements). The maxi-
mum number of QTL allowed for each trait was set at 10 and the
penalty for addition of QTL was set as the 95th percentile LOD score
from 1000 scanone permutations, with imputation as the selected
model for scanone. A solely additive model was used; epistatic and
interaction effects were not considered and thus heavy and light
interaction penalties were set at 0. QTL positions were optimized
using refineqtl, which considers each QTL one at a time, in random
order, iteratively scanning in order to move the QTL to the highest
likelihood position. QTL models for each trait in each environment
were obtained using this procedure. QTL within 5 cM of each other
were designated as the same QTL.

QTL by environment analysis: Linear model comparison: Linear
modeling was used to determine instances and strength of QEI using all
data from two different years within three locations (FL, IN, and NY).
The specific growouts analyzed together were FL05, FL06, IN09, IN10,
NY05, and NY12. FL, IN, and NY were then used as covariates in QTL
analysis. Two QTL models, one with location as an additive and
interactive covariate and onewith location as only an additive covariate,
were fit for each phenotype (sample weight, 20 elements) using the
scanone function in R/qtl,

yi ¼ mþ bggi þ bxxi þ ggixi þ ei (1)

yi ¼ mþ bggi þ bxxi þ ei (2)

where yi is the phenotype of individual i, gi is the genotype of indi-
vidual i, and xi is the location of individual i. Bg and Bx are additive
effects of genotype and environment, respectively, and g is the effect
of genotype by environmental interaction. LOD scores for each
marker using model (2) were subtracted from LOD scores for each
marker using model (1) to the isolate genetic by location effect. QTL
by location interaction was determined as QTL with a significant
LOD score after subtraction. The significance threshold was calcu-
lated from 1000 permutations of the three-step procedure (fitting the
two models and then subtracting LOD scores), and taking the 95th
percentile of the highest LOD score.

Mapping on within-location differences: QTL were mapped on
phenotypicdifferencesbetweencommon lines grownover 2 yr at a single
location. This procedure was used to compare FL05 and FL06, IN09 and
IN10, and NY05 and NY12 by calculating the differences for each trait
value between common lines in location pairs (FL05-FL06, IN09-IN10,
and NY05-NY12) and using these differences for analysis using the
previously described stepwiseqtl mapping and permutation procedure.

n Table 1 Broad-sense heritability (H2) of element concentrations

Trait All Env NY05 NC06 MO06

Seed weight 0.30 0.59 0.69 0.89
B 0.02 0.35 0.51 0.06
Na 0.07 0.34 0.23 0.19
Mg 0.04 0.77 0.69 0.75
Al 0.07 0.39 0.50 0.08
P 0.03 0.62 0.69 0.33
S 0.05 0.73 0.77 0.51
K 0.06 0.69 0.72 0.36
Ca 0.12 0.65 0.63 0.77
Mn 0.14 0.80 0.80 0.75
Fe 0.07 0.76 0.73 0.63
Co 0.06 0.65 0.54 0.42
Ni 0.05 0.84 0.54 0.82
Cu 0.17 0.80 0.75 0.92
Zn 0.07 0.68 0.73 0.86
As 0.02 0.37 0.45 0.01
Se 0.03 0.32 0.35 0.68
Rb 0.03 0.49 0.45 0.69
Sr 0.06 0.61 0.48 0.53
Mo 0.23 0.85 0.73 0.96
Cd 0.36 0.71 0.69 0.24

Outliers for each element calculated with outlier removal function, designated as
NA. For each single environment, for each trait, only lines without missing data
and with reps .1 used to calculate heritability. All env, line replicate averages
from each location; NY05, 50 lines with two replicates, 199 lines with three
replicates; NC06, 121 lines with two replicates, 53 lines with three replicates,
four lines with four replicates; MO06, 50 lines with two replicates, 18 lines with
three replicates.
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Data availability
All data and scripts are available on Ionomics Hub (iHUB) in theMaize
Database at www.ionomicshub.org.

RESULTS

Genetic regulation of elemental traits
The data used for this study is comprised of 20 elementsmeasured in the
seeds from the Zea mays L. intermated B73 · Mo17 recombinant
inbred line (IBM) population grown in 10 different location/year set-
tings. The IBM population is a widely studied maize population of
302 intermated recombinant inbred lines, each of which have been
genotyped with a set of 4217 biallelic SNP genetic markers (Lee et al.
2002). The four rounds of intermating and subsequent inbreeding
generated increased recombination and a longer genetic map for the
IBM than for typical biparental recombinant inbred line populations.
The number of individuals, marker density, and greater recombination

facilitates more precise QTL localization than a standard RIL popula-
tion (Hazen et al. 2003; Balint-Kurti et al. 2007; Dubois et al. 2010;
Ordas et al. 2010; Zhang et al. 2010; Lung’aho et al. 2011). This greater
resolution reduces the number of genes within a QTL support interval,
increasing the utility of QTL mapping as a hypothesis test for shared
genetic regulation of multiple traits and promoting discovery of the
molecular identity of genes affecting QTL. For this study, subsets of the
IBM population were grown at Homestead, Florida in 2005 (FL05) and
2006 (FL06), West Lafayette, Indiana in 2009 (IN09) and 2010 (IN10),
Clayton, North Carolina in 2006 (NC06), Poplar Ridge, New York in
2005 (NY05), 2006 (NY06), and 2012 (NY12), Columbia, Missouri in
2006 (MO06), and Limpopo, South Africa in 2010 (SA10) (Table S1).
While very few of the 233 unique IBM lines in the experiment were
grown in all environments, 106 of the 233 lines were grown in seven or
more environments and 199 were grown in three or more environ-
ments. Within each growout, all samples were treated identically: seeds
from all environments were stored in temperature and humidity

Figure 1 Ionome QTL from 10 environments. QTL identified for seed weight and 20 element accumulation traits using the IBM RIL population
grown in 10 environments. (A) QTL on chromosome 1 affecting variation in molybdenum accumulation. An interval of Chr1 is shown on the x-axis
in centimorgans. The LOD score for the trait-genotype association is shown on the y-axis. The horizontal line is a significance threshold from
1000 random permutations (a = 0.05). The LOD profiles are plotted for all environments in which the highlighted QTL was detected. (B) Total
number of QTL detected for each trait, colored by environment. (C) Significant QTL (a = 0.05) for each trait. QTL location is shown across the
10 maize chromosomes (in centimorgans) on the x-axis. Dashes indicate QTL, with environment in which QTL was found designated by color. All
dashes are the same length for visibility. The two black boxes around dashes correspond to LOD profiles traces in (A) and (D). (D) Stepwise QTL
mapping output for nickel on chromosome 9. LOD profiles are plotted for all environments in which the QTL is significant.
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controlled storage rooms after harvest and then shipped to the iono-
mics lab.We do not expect any change in ion composition from storage
within a growout; however, we cannot rule out that some of the differ-
ences between growouts might be due to slightly different moisture
content. These differences are not likely to account for the genetic by
environment interactions we observe as they should have similar effects
on all lines. Single seeds were profiled for the quantities of 20 elements
using ICP-MS. These measurements were normalized to seed weight
and technical sources of variation using a linear model, with the result-
ing values used as the elemental traits for all analyses (Shakoor et al.
2016). After outlier removal, seed element phenotypes were derived by
averaging line replicates (kernels subsampled out of pooled ears from a
row) within an environment.

Variation in the elemental traits was affected by both environment
and genotype. Elemental traits generally exhibited lower heritability
among genotypes grown across multiple environments than among
genotype replicates within a single environment (Table 1). The broad-
sense heritability (H2) of seed weight, 15 of 21 elements in NY05, 13 of
21 elements in NC06, and 13 of 21 elements in MO06 exceeded 0.60.
Elements exhibiting low heritability within environments corre-
sponded to the elements that are prone to analytical artifacts or present
near the limits of detection by our methods, such as B, Al, and As.
Seven elements had a broad sense heritability of at least 0.45 in a single
environment (NY05, NC06, and NY06) but ,0.1 across all environ-
ments. This decrease in heritability across the experiment, which was
particularly striking for Mg, P, S, and Ni, is consistent with strong
genotype by environment interactions governing the accumulation of
these elements.

A stepwise algorithm, implemented via stepwiseqtl in the R package
R/qtl (Broman and Speed 2002), was used to map QTL for seed weight
and 20 seed elemental phenotypes. The stepwise algorithm iterates
through the genome and tests for significant allelic effects of each
marker on a phenotype. Forward and backward regression generates
the final genome-wide QTL models for each trait. This QTL mapping
procedure on 21 traits was completed as a separate analysis for each
subset of lines from the IBM populations grown in each of the 10 en-
vironments. For the sake of completeness and to comprehensively in-
vestigate all of the traits to which we had access, all elemental traits in
each environment were tested, even in cases where heritability for a
given element was low in an environment. QTL significance were de-
termined using the 95th percentile threshold from 1000 scanone per-
mutations as a penalty score for adding QTL to the stepwise model
(Churchill and Doerge 1994). We examined the relationship between
the heritability of an element in a given environment and number of
QTL identified in that environment (Figure S1). As expected, elements
with very low heritability had few to no QTL, while larger numbers of
QTL were identified for higher heritability elements.

The environmental dependence on QTL detection was first esti-
mated by identifying QTL common to multiple environments. If QTL
detected in two or more growouts affected the same element and
localized within 5 cM of each other, they were considered to be the
same locus.Across the 10 environments, a total of 79QTLwas identified
for seed weight, and 18 of the 20 elemental traits tested (none for Al or
Co) (Figure 1, B and C). Of these QTL, 63 were detected in a single

n Table 2 QTL with significant by-location interactions

Trait Chr Pos (cM) LOD Significance Thresholda

Mn 1 232.4 7.03 4.59
Mn 5 195.8 4.61 4.59
Fe 5 204.6 4.50 3.94
Ni 1 410.3 6.15 4.69
Ni 9 7.7 28.50 4.69
Cu 7 165.9 5.31 4.72
Zn 4 157.4 4.44 4.13
Rb 2 185.3 3.38 2.80
Mo 1 378.0 48.49 4.20
Cd 2 214.6 20.26 3.87
a
a = 0.05.

Figure 2 Significant QTL-by-location interactions reflect variation in
single environment mapping. (A) Nickel QTL on chromosome 9 ex-
hibits variation between FL, IN, and NY growouts in single environ-
ment QTL mapping. Scanone QTL mapping output for Ni on a
segment of Chr9 is plotted for FL05, FL06, IN09, IN10, NY05, and
NY12. LOD score is plotted on the y-axis and centimorgans position
on the x-axis. Horizontal line corresponds to significance threshold
(a = 0.05). (B) Scanone QTL mapping for combined Ni data from
Florida (FL05 and FL06), Indiana (IN09 and IN10), and New York
(NY05 and NY12) growouts. All lines within each location were in-
cluded, with covariates designated based on location. QTL mapping
output using model with location as an additive covariate is shown as
dotted line. QTL mapping output from model with location as both an
additive and interactive covariate is shown as dashed line. Subtracted
LOD score profile from the two models (QTL by location interactive
effect only) is shown as solid line. Horizontal line corresponds to sig-
nificance threshold for QTL by location interaction effect, derived from
1000 iterations of the three step procedure using randomized data:
scanone QTL mapping with the additive model, scanone QTL map-
ping with the additive and interactive model, and subtraction of the
two models.
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environment and 16 were detected in multiple environments. The
16 QTL found in multiple environments included QTL detected in
nearly all of the environments and QTL detected in only two. One
QTL for Mo accumulation, on chromosome 1 in the genetic region
containing the maize ortholog of the Arabidopsis molybdenum trans-
porter MOT1 (Baxter et al. 2008), was found in nine environments
(Figure 1A). Another QTL affecting Cd accumulation, on chromo-
some 2 and without a clear candidate gene, was found in eight
environments. Other QTL were present only in a smaller set of
environments, such as the QTL for Ni accumulation on chromo-
some 9, which was found in five environments (Figure 1D). The
strength of association and percent variance explained showed strong
differences between environments even for these QTL that were de-
tected in multiple environments (Table S2).

As seen in the full-genome view of all QTL colored by environment
(Figure 1C), there is a high incidence of QTL found in single locations.
Three hypotheses could explain the large proportion of QTL found
only in a single location: (1) strong QTL by environment interaction
effects; (2) false positive detection of a QTL in an individual location;
and (3) false negative assessment of QTL absence due to genetic action,
but statistical assessment below the permutation threshold in other
environments. To reduce the risk of false positives in a single environ-
ment’s QTL set, the significance threshold was raised to the 99th per-
centile, where 31 of the 63 environment-specific QTL remained
significant. Despite the large number of trait/environment combina-
tions tested (20 traits in 10 environments), the number of QTL detected
is much larger than the null expectation derived from a Bonferroni
correction: 10 QTL (95th percentile threshold) and two QTL (99th
percentile threshold). To account for false negatives, we scanned for
QTL using a more permissive 75th percentile cutoff. Of the 63 single-
environment QTL, only nine had QTL in other environments by
this more permissive threshold. Thus, the majority of the 63 single-
environment QTL most likely result from environmentally contingent
genetic effects on the ionome.

QTL by environment interactions
That QTL detection was so strongly affected by environment suggested
the effects of allelic variation on element concentration were heavily
dependent on environmental variables. These results, however, did not
specifically test for QEI. Comparison between environments with our
data are additionally complicated because different subsamples of the
IBMpopulationweregrownat thesemultiple locations andyears.While
there are many different approaches to identifyingQEI described in the
literature (summarized in El-Soda et al. 2014), we focused on two pre-
viously implemented methods. The first considered location (but not
year) by comparing the goodness-of-fit for linear models with and

without an interactive covariate (Nichols et al. 2007; Leinonen et al.
2013; Bhatia et al. 2014). The second method takes advantage of the
ability to grow the same RILs in multiple years. Trait values measured
in the same IBM line for the same element at the same site but in
different years were subtracted from each other and the difference be-
tween years was assigned as the trait value for that RIL genotype for
QTL detection (Ungerer et al. 2003; Tétard-Jones et al. 2011).

Linear model estimation of QTL by location effects: The most
common approach to analyze QEI is to fit a linear model with envi-
ronment as both a cofactor and an interactive covariate and compare
results toamodelwithenvironment as anadditive covariate (DesMarais
et al. 2013). This method is most amenable when data are available for
the same lines grown in every environment, which was not the case
across all of our dataset. Data from the three locations with two repli-
cate years each (FL, IN, NY) were analyzed to reduce the number of
covariates and increase the power to detect variation from the environ-
ment. The data for both years in each location were combined (FL05
and FL06; IN09 and IN10; and NY05, NY06, and NY12), designating
covariates based on location.

Two linear QTL models introduced in the Materials and Methods
sectionwerefit to the combined data using the FL, IN, andNY locations
as covariates. These models reflect the dependence of phenotype on
genotype, environment, and genotype-by-environment interactions.
Stating these models again:

yi ¼ mþ bggi þ bxxi þ ggixi þ ei (1)

yi ¼ mþ bggi þ bxxi þ ei (2)

The first equation fit (1) is the full model considering the phenotype of
individual i (yi) as controlled by genotype (gi), location (xi), and ge-
notype by location interaction (gixi), while the reduced model (2)
estimates phenotype without considering genotype by location inter-
action, using genotype and location as purely additive factors. Bg and
Bx represent the additive effects of genotype and environment, re-
spectively, while g represents the effect of the genotype by environ-
ment interaction. By using likelihood ratio tests on full and reduced
models, we can test the hypothesis that genotype by environment
interactions significantly improve the fit of the model to the data
and estimate the effects of genetic by environment interactions.

The program R/qtl was used to fit QTL using both the full and
reducedmodels for sample weight and 20 elements, with three locations
encoded as covariates in the environment term. For each marker, LOD
scores resulting from the reduced QTL model were subtracted from
LOD scores determined by the full model, leaving a LOD score for each
marker representing solely the significance of the genetic by location

n Table 3 Significant QTL for trait differences

Location Years Compared Trait Chr Pos (cM) LOD Significance Thresholda

FL FL05_FL06 Mg 8 294.4 5.23 3.74
FL FL05_FL06 P 4 130.2 3.89 3.60
FL FL05_FL06 P 4 297.8 6.03 3.60
FL FL05_FL06 P 8 294.6 8.43 3.60
FL FL05_FL06 Co 1 296.3 4.36 3.69
FL FL05_FL06 Mo 1 378.6 6.10 3.70
IN IN09_IN10 Fe 8 140.9 4.52 3.62
NY NY05_NY12 K 5 154.2 4.25 3.61
NY NY05_NY12 Sr 7 193.2 4.45 3.66
a
a = 0.05.
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component. The significance threshold for the subtracted LOD scores
was calculated by using 1000 permutations of the three step procedure
(fitting the twomodelswith randomized data and then subtractingLOD
scores). Even with this underpowered dataset, 10 QTL by location
interactions exceeded the threshold (a = 0.05, Table 2). Interactions
between QTL and location are likely to be due to a combination of soil
and weather differences across different locations. In the case of Ni, our
initial single-element QTLmapping conducted separately on data from
each environment identified differences in QTL presence or strength
between FL, IN, andNY locations for a QTL located at the beginning of
chromosome 9 (Figure 2). This QTL corresponds to a locus found to
have a significant QTL by location effect (Table 2). Remarkably, all
elemental QTL by location interactions detected by this approach af-
fected trace element accumulation. These elements are both low in
concentration in the grain and often variable among soils (White and
Zasoski 1999). Cd, an element for which we found significant QEI, has
detrimental effects on both human and plant health (Godt et al. 2006)
and is toxic in food at levels as low as 0.05 ppm. (United States De-
partment of Agriculture 2014). The locus with the strongest QEI for Cd
does not follow location averages of Cd content in the grain (Table S3)
and therefore is unlikely to be affected by crossing a detection threshold
driven by higher Cd in the soils at those locations. The lack of direct
correlation between QTL significance and grain content also occurs for
the loci with strong by-location effects for Mo and Ni. This demon-
strates that reduced cadmium or enhanced micronutrient contents in
grain require plant breeding selections that consider complex genetic by
environment interactions rather than genotypes assessed in a single soil
environment.

QTL for trait differences within location: The previous method
identified genotypes with interactions with location but not with year.
Year to year variation will also have effects due to differences in rainfall,
temperature and management practices. To examine variation that
occurs within a location over different years, we examined intralocation
QEI in the three previously used locations with 2 yr samples (FL05 and
FL06, IN09 and IN10, and NY05 and NY12). QTL were mapped using
the stepwise algorithm on trait differences for sample weight and 20 el-
ements between common lines among the two different years from a
location. This approach identified loci affecting phenotypic differences
between the same lines grown on the same farm but in different years.
Six QTL were found for FL05-FL06 differences, one QTL for IN09-
IN10 differences, and two QTL for NY05-NY12 differences (Table 3).
These trait-difference QTL included loci identified in our single ele-
ment/environment QTL experiment where a locus was present in one
year, but not the other, or the QTL was found in both years with
differing strength (Figure 3). Six of the difference QTL were detected
at loci where no QTL were detected when the years were mapped
separately, revealing novel gene by environment interactions not obvi-
ous from the single year data. These significant effects of year-to-year
environmental variation within the same location indicated that factors
beyond location are both influencing the ionome and determining the
consequences of genetic variation.

Figure 3 Comparison of QTL mapped on traits in single environments
and trait differences between environments. Examples from stepwise
QTL mapping on trait differences between two years at one location,
calculated between IBM lines common to both years. Scanone QTL
mapping output is also plotted for the same trait from each year
separately. LOD score is shown on the y-axis and centimorgans posi-

tion on the x-axis. Horizontal lines correspond to significance threshold
(a = 0.05). (A) Molybdenum QTL on chromosome 1 mapped for Mo
in FL05, Mo in FL06, and difference in Mo content between FL05 and
FL06. (B) Iron QTL on chromosome 8 mapped for Fe in IN09, Fe in
IN10, and difference in Fe content between IN09 and IN10. (C) Potas-
sium QTL on chromosome 5 mapped for K in NY05, K in NY12, and
difference in K content between NY05 and NY12.
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DISCUSSION
The results described here demonstrate that the concentrations of
elements in the kernels of maize are strongly affected by the interaction
of genetics with growth environment. The majority of elements
exhibited higher heritability within each environment and a dramatic
drop in heritability across multiple environments. Combined with the
presence of a large number of single-environment QTL, these data
support the hypothesis that environment has a significant impact on
genetic factors influencing the ionome.Bychanging the stringencyof the
statistical tests,weareable todiscount the likelihood that that these single
environment QTL are the result of a large number of false positives or
false negatives. The structure of our data, with few linesmeasured across
all locations and years, limited our ability to test for direct QTL by
environment interactions. As a result, wehave likely underestimated the
extent of QEI. Future studies with uniform lines across environments
will allow for inclusion of data from all environments and lines and
increase power todetect additional genetic by environment interactions.

Nevertheless, we were able identify QEI over different locations and
QEI at a single locationover different years.We identifieda strongnickel
QTL on chromosome 9 that was found in Indiana and New York with
single-environment QTL mapping, but not in Florida. This same locus
also was found to be a significant location-interacting QTL when using
a model that included Indiana, New York, and Florida as covariates.
One possible cause for this, and other location specific QTL, might be
differences in element availability between local soil environments. In-
terestingly, the presence/absence of the QTL does not seem to correlate
with the mean levels of the elements in the grains sampled from that
location, suggesting that QEI are not being driven solely by altered
availability of the elements in the soil. Local soil differences are less
likely to be driving the QTL found for pairwise differences between two
years at one location. Soil content should remain relatively similar from
year to year at the same farm, suggesting that the loci identified by
comparison between years and within location will encode components
of elemental regulatory processes responsive to precipitation, temper-
ature, or other weather changes. Experiments with more extensive
weather and soil data, or carefully manipulated environmental con-
trasts, are needed to create models with additional covariates and pre-
cisely model environmental impacts.

Althoughthemapping intervalsdonotprovidegene-level resolution,
several QTL overlap with known elemental regulation genes, such
as the QTL on chromosome 1 at 378 cM which coincides with
ZEAMMB73_045160, an ortholog of the Arabidopsis molybdenum
transporter, MOT1. We observe strong effects and replication of this
QTL across nearly all environments, suggesting that this MOT1 ortho-
log plays a role in a variety of environments. Other large effect QTL
found in several environments merit further investigation, as they may
recapitulate important element-associated genes that have yet to be
identified. Identification of the genes underlying these QTL and the
gene/environmental variable pairs underlying the QEIs, will improve
our understanding of the factors controlling plant elemental uptake and
productivity. Given the high levels of variability that the interaction
between genotype and environmental factors can induce in these traits,
conventional breeding approaches that look for common responses
across many different environments for a single trait may fail to im-
prove the overall elemental content, necessitating rational approaches
that include both genetic and environmental factors.

Conclusions
Here we have shown that the maize kernel ionome is determined by
genetic and environmental factors, with a large number of genetic by
environment interactions. Elemental profiling of the IBMpopulation

across 10 environments allowed us to capture environmentally
driven variation in the ionome. Our QTL analysis on elements found
mainly single-environment QTL, indicative of substantial genetic by
environment interaction in establishment of the elemental compo-
sition of the maize grain. This approach, along with identification of
QEI occurring both within a single location over different years and
QEI between different locations, demonstrated that gene by envi-
ronment interactions underlie elemental accumulation in maize
kernels.
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