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ABSTRACT Fusarium ear rot (FER) incited by Fusarium verticillioides is a major disease of maize that reduces
grain quality globally. Host resistance is the most suitable strategy for managing the disease. We report the
results of genome-wide association study (GWAS) to detect alleles associated with increased resistance to FER in
a set of 818 tropical maize inbred lines evaluated in three environments. Association tests performed using
43,424 single-nucleotide polymorphic (SNPs) markers identified 45 SNPs and 15 haplotypes that were signif-
icantly associated with FER resistance. Each associated SNP locus had relatively small additive effects on disease
resistance and accounted for 1–4% of trait variation. These SNPs and haplotypes were located within or adjacent
to 38 candidate genes, 21 of which were candidate genes associated with plant tolerance to stresses, including
disease resistance. Linkage mapping in four biparental populations to validate GWAS results identified 15 quan-
titative trait loci (QTL) associated with F. verticillioides resistance. Integration of GWAS and QTL to the maize
physical map showed eight colocated loci on chromosomes 2, 3, 4, 5, 9, and 10. QTL on chromosomes 2 and
9 are new. These results reveal that FER resistance is a complex trait that is conditioned by multiple genes
with minor effects. The value of selection on identified markers for improving FER resistance is limited; rather,
selection to combine small effect resistance alleles combined with genomic selection for polygenic background
for both the target and general adaptation traits might be fruitful for increasing FER resistance in maize.
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Fusarium ear rot (FER) is one of the most important food and feed
safety challenges in maize production worldwide (Munkvold and
Desjardins 1997). Apart from reducing the quantity and quality of

harvested maize, some of the Fusarium spp. produce mycotoxins,
which are harmful, and can be fatal to humans and animals consuming
contaminated grain (Missmer et al. 2006). More than 10 Fusarium spp.
can cause ear rot, but the two most important are Fusarium verticil-
lioides [synonym F. moniliforme Sheldon] inciting FER and F. grami-
nearum that causes Gibberella ear rot (Seifert et al. 2003; Mesterházy
et al. 2012; Kebebe et al. 2014). Fusarium verticillioides is more prev-
alent in low rainfall, high humidity environments, common in tropical
and subtropical maize production environments, while F. graminea-
rum is predominant in cooler, high rainfall maize growing environ-
ments (Munkvold 2003). Infection by F. verticillioides can result in
decreased grain yields, poor grain quality, and contamination by the
mycotoxin fumonisin, a suspected carcinogen associated with various
diseases in livestock and humans (Munkvold and Desjardins 1997;
Fandohan et al. 2003; Munkvold 2003; Presello et al. 2008).
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Fusarium verticillioides can survive in soil, healthy seed, and plant
residue, and infection of maize can be initiated from seedborne or
airborne inoculum as well as systemic infection from the soil through
roots to kernels (Morales-Rodríguez et al. 2007). Because of the high
rate of maize production for subsistence in many developing countries,
the solution to the problems of FER and fumonisin contamination is
not to strengthen regulations, but rather to reduce fungal infection and
mycotoxin levels in grain. The best strategy for controlling FER and
reducing incidence of fumonisin contamination is the development
and deployment of maize varieties with genetic resistance. Preharvest
host resistance is economical to famers, leaves no harmful residue in
food or the environment, and is compatible with other control mea-
sures. This strategy requires a clear understanding of the genetics of
resistance, and the identification of alleles significantly contributing to
reduced F. verticillioides infection and colonization, and fumonisin
production (Mukanga et al. 2010).

Resistance to FER is quantitatively inherited andadditive, dominant,
and additive by dominant effects are important (Boling and Grogan
1965). Mapping studies using biparental populations have shown that
resistance to FER is controlled by minor genes with relatively small
effects that vary between environments and are not consistent between
populations (Mesterházy et al. 2012). Robertson-Hoyt et al. (2006) and
Bolduan et al. (2009) reported genotypic correlations between FER
resistance and fumonisin accumulation of 0.87 in North Carolina
and 0.92 in Germany, respectively, indicating that visual selection of
FER resistance should be effective in simultaneously reducing fumoni-
sin contamination. Although genetic variation for resistance to FER
exists among maize inbred lines and hybrids, there is no evidence of
complete resistance to either FER or fumonisin contamination inmaize
(Clements and Kleinschmidt 2003; Clements et al. 2004). The search
for novel resistance genes against F. verticillioides is a very important
activity in the quest to find a lasting solution to FER problems in maize
production. Identification of specific allelic variants that confer im-
proved resistance would permit maize breeders to select for recombi-
nant chromosomes in backcross progeny that have desired target
resistance allele sequences in coupling phase with the favorable elite
polygenic background, facilitating the improvement of disease resis-
tance without decreasing agronomic performance.

Several studieshave identifiedquantitative trait loci (QTL)associated
with resistance to F. verticillioides and subsequent reduced fumonisin
accumulation (Robertson-Hoyt et al. 2006; Bolduan et al. 2009). For
example, linkage-based mapping studies using F2:3 populations derived
from two resistant parents and a common susceptible parent identified
nine and seven QTL associated with F. verticillioides resistance, and
three of the QTL were common across the two populations (Pérez-
Brito et al. 2001). In another study with two populations sharing a
common resistant parent, a common QTL was detected on chromo-
some 4; this QTL was validated in an independent near isogenic line
population (Li et al. 2011; Chen et al. 2012). Other QTL mapping
studies have also revealed many QTL for F. verticillioides resistance

that are stable across environments (Robertson-Hoyt et al. 2006;
Ding et al. 2008). Using the GWASmethod, seven SNPs were identified
for FER resistance based on a diverse inbred line population comprised
of 1687 maize inbred lines (Zila et al. 2013, 2014). These studies
revealed the presence of genetic variation for FER and the potential
for identifying and deploying molecular markers for improving FER
resistance in maize.

GWAS has shown great potential for detecting QTL with high
resolution in diverse germplasm (Buntjer et al. 2005). In Arabdopsis
thaliana, GWASwas conducted using 213,497 SNPs and 473 accessions
to reveal climate-sensitive quantitative trait loci (Li et al. 2010). In
maize, GWAS has successfully been used to identify several casual
genomic loci for different traits (Weng et al. 2011; Wang et al.
2012b; Liu et al. 2014; Samayoa et al. 2015). However, GWAS also
has shortcomings, such as detection of false positives due to presence
of population structure; fortunately, several advanced statistical meth-
ods have been developed to reduce the false positive rate (Andersen
et al. 2005; Yu et al. 2006a; Larsson et al. 2013). Compared to traditional
linkage-based analyses, association mapping offers higher mapping
resolution while eliminating the time and cost associated with devel-
oping synthetic mapping populations (Flint-Garcia et al. 2005; Yu et al.
2006b). On the other hand, linkagemapping generates low rates of false
positive results, which offset the limitation of so few alleles in offspring
populations (Jiang andZeng 1995; Ding et al. 2015b). CombiningGWAS
and linkage mapping could exploit the complementary strengths of both
approaches to identify casual loci (Fulker et al. 1999; Pedergnana et al.
2014; Motte et al. 2014).

In this study, we usedGWAS to identify genomic regions associated
with FER resistance in tropical maize germplasm populations that were
evaluated across three environments in Mexico. GWAS-identified
genomic regions were validated through linkage mapping using four
biparental populations. Furthermore, we identified a set of tropical
maize inbred lines with high levels of FER resistance that can be used
to improve FER in maize breeding programs.

MATERIALS AND METHODS

Germplasm materials and experimental design
A collection of 940 elite tropical maize inbred lines was assembled
from International Maize and Wheat Improvement Center (CIM-
MYT) maize breeding programs located in Zimbabwe, Kenya,
Colombia, and Mexico, and from the physiology, pathology, and
entomology programs was evaluated for disease resistance (Semagn
et al. 2012; Wen et al. 2011). One elite maize inbred line, CML155,
was used as a resistant check. This line had previously been identi-
fied as highly resistant to FER following multiple years of visual
evaluation under field conditions in CIMMYT’s experimental sta-
tion of Agua Fria (AF), Mexico. Four biparental-derived popula-
tions that included a doubled haploid (DH) population composed of
201 lines derived from crossing CML495 (resistant) to LA POSTA

n Table 1 Descriptive statistics and correlation of PIA parameter for FER resistance for the GWAS panel

Env Mean (%) Range (%) SD CV (%) Skewness Kurtosis H2 Correlation s2
G s2

GE

TL11 22.96 0–87 21.4 93.2 1.1875 0.6274 0.89 1 0.64�� 0.34�� 0.040�� —

AF11 7.76 0–47 9.49 122.3 2.4636 6.8599 0.71 0.54�� 1 0.58�� 0.016�� —

AF10 9.59 0–61 8.99 93.7 1.9646 5.1865 0.68 0.26�� 0.44�� 1 0.005�� —

Combine 16.03 0–74 12.1 75.5 1.2374 1.3768 0.66 0.88�� 0.79�� 0.59�� 0.014�� 0.015��

Correlation below the diagonal is phenotypic correlation coefficient; correlation above the diagonal is genotypic correlation coefficient. Env, environments; SD,
standard deviation; CV, coefficient of variation; s2

G, genetic variance; s2
GE, genotype–environment interactions variance.

��Significant at P = 0.01.
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SEQ. C7 F64-2-6-2-2-B-B-B (susceptible), designated POP1 and
F2:3 biparental populations developed from three resistant parents
(CML492, CML495, and CML449) crossed to a single susceptible
parent (LPSMT), and named POP2 (277 families), POP3 (268 fam-
ilies), and POP4 (272 families), respectively, were evaluated for re-
sistance to FER (Supplemental Material, Table S1).

The GWAS panel of 940 inbred maize lines was screened for FER
resistance in two locations: CIMMYT’s experimental station of AF,
located in the state of Puebla in Mexico [longitude 97�389W; latitude
20�289N; elevation 100–110 masl (meters above sea level)] in 2010 and
2011 (AF10 and AF11); and CIMMYT’s experimental station of Tlal-
tizapan (TL) located in the state ofMorelos,Mexico (longitude 99�79W;
latitude 18�419N; elevation 940 masl) in 2011 (TL11). Entries were
divided into four sets on the basis of maturity. Sets were randomized
within the field and each set was blocked using an a-lattice design and
replicated three times. Twenty seeds were planted in 2-m row plots,
with 0.2 m between plants in a row and 0.75 m between rows. Two
seeds were planted per hill and later thinned to a single plant to give a
total of 10 plants per plot.

FER inoculations and evaluation
The experiments were artificially inoculated with a local toxigenic F.
verticillioides isolate using the nail punch/sponge technique (Drepper
and Renfro 1990), �7 d after flowering. A single-spore isolate of F.
verticillioides was increased on sterile maize kernels, incubated for 14 d
at 25�. After incubation, the spores were harvested, and concentration
estimated using a hemocytometer and adjusted to 5 · 106 spores ml21

in sterile distilled water with 0.2 ml/l Tween-20 surfactant (poly-
oxyethylene 20-sorbitan monolaurate). The primary ear of each plant
in a plot was inoculated using a nail punch/sponge inoculation method
with a suspension that contained 5 · 106 spores ml21 about 7 d after
flowering. The same inoculation method was used for both the GWAS
panel and QTL mapping population.

At maturity, inoculated ears from each plot were harvested by hand
and individually rated for FER symptoms using a seven-point scale,
where 1 = no visible disease symptoms, 2 = 1–3%, 3 = 4–10%, 4 = 11–
25%, 5 = 26–50%, 6 = 51–75%, and 7 = 76–100% of kernels exhibiting
visual symptoms of infection (Reid et al. 1995). The overall response of
each line, defined as percentage of infected area (PIA) was calculated
using the formula described by Pérez-Brito et al. (2001). The average
FER severity score of each line was named EarRot1-7. During harvest-
ing, another variable, ear rot aspect (ERAspect), was assessed on a per
plot basis using a 1–5 scoring scale; where 1 = no visible disease symp-
toms on kernels, 2 = 1–10%, 3 = 11–20%, 4 = 21–30%, and 5 = 31% or
more of the kernels infected (Drepper and Renfro 1990). ERAspect is
an assessment of overall cleanliness of the cob (presence or absence of

general ear rot symptoms). Other variables evaluated includedmaturity
measures as days to anthesis (DTA) and silking (DTS), plant height, ear
height, bad husk cover, and stem lodging. Bad husk cover was rated on
a 1–5 scale, where 1 represents husks tightly arranged and extending
beyond the ear tip (very good husk cover) and 5 = ear tips exposed (bad
husk cover).

Genotypic data
Total DNA was extracted from young leaves using the cetyltrimethy-
lammonium bromide method (CIMMYT 2005), and DNA quality,
purity and quantity for each sample was checked using gel-electropho-
resis and spectrophotometer (NanoDrop ND8000, Thermo Scientific).
A total of 854 maize inbred lines with good quality DNA were geno-
typed using an Illumina MaizeSNP50 BeadChip which contained
56,110 SNP markers (Ganal et al. 2011). The SNP genotyping was
performed on an Illumina Infinium SNP genotyping platform at Cor-
nell University Life Sciences Core Laboratories Center using the pro-
tocol developed by the Illumina Company. The genotypic data
summary (allele frequency, heterozygous rate, and missing rate) were
calculated by PLINK v1.07 software (Purcell et al. 2007).

The four biparental populations used for linkage mapping were
genotyped by low density markers from the Kompetitive Allele Specific
PCR (KASP) genotyping system of LGC Company (http://www.
lgcgroup.com/) (Semagn et al. 2014). A total of 1250 SNPs were
screened to identify markers polymorphic between the two parental
lines. Of the polymorphic SNP markers, 200 were selected and used to
genotype the entire population. Markers with allele frequency between
0.4 and 0.6 for both DH and F2:3 populations were included in the
analysis.

Statistical analyses
Descriptive statistics (such as mean, range, skewness, and kurtosis)
and correlations of phenotypic data were conducted in Excel 2010.
Genetic correlation, and best linear unbiased estimates (BLUEs)were
calculated using SAS (SAS Institute 2011) with multiple environ-
ments traits analysis package (META) which can be found on CIM-
MYT Dataverse (http://hdl.handle.net/11529/10217) (Vargas et al.
2013). For the single environment BLUE, a mixed linear model was
performed including line as a fixed effect, days to silking as a fixed
linear covariate, and replication and block within replication as
random effects. In the combined experimental analysis, each com-
bination of location and year was considered an environment, with a
mixed linear model including line as a fixed effect, days to silking
(DTS) as a fixed linear covariate, and year, line · environment in-
teraction, replication within environment, and block within repli-
cation as random effects.

n Table 2 Phenotypic (below the diagonal) and genetic (above the diagonal) correlation coefficient between FER resistance and
agronomic traits

Variable Ear Rot (PIA) DTA DTS Plant Height Ear Height Stem Lodging Bad Husk Cover

Ear rot (PIA) 1 20.07� 20.10�� 20.13� 20.11� 0.38�� 20.03
DTA 20.06 1 0.97�� 0.25�� 0.28�� 20.20�� 20.36��

DTS 20.08� 0.92�� 1 0.28�� 0.29�� 20.29�� 20.34��

Plant height 20.11�� 0.24�� 0.25�� 1 0.83�� 0.13�� 20.23��

Ear height 20.10�� 0.24�� 0.23�� 0.82�� 1 0.07� 20.22��

Stem lodging 0.01 20.01 20.007 0.01 0.02 1 0.43��

Bad husk cover 0.00 20.29�� 20.29�� 20.21�� 20.19�� 0.02 1

DTA, days to anthesis; DTS, days to silking.
� Significant at P = 0.05.
��Significant at P = 0.01.
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The ANOVA was conducted in R software with ANOVA (lm)
function (R Core Team 2015); the model for ANOVA was as follows:

Single  environment ANOVA: Pheno � Repþ Block:Repþ Entry

Multi  environment ANOVA: Pheno

� Env � Entry þ Rep:Env þ Block:ðRep:EnvÞ

where Pheno was phenotypic data; Env was environments, which was
the combination of location and year; Rep was replication; Block was
block in a-lattice design; Entry was the inbred lines used in this study.

Variance components were estimated using VarCorr function after
fitting the linear mixed model (lmer) with the REML option in R
software (R Core Team 2015). The single environment repeatability
(H2) was estimated using the following formula (Knapp et al. 1985):

H2 ¼ s2
G

��
s2
G þ s2

e

�
r
�
;

Broad-sense heritability (H2) was estimated using the formula below
(Knapp et al. 1985):

H2 ¼ s2
G

��
s2
G þ s2

GE

�
Eþ s2

e

�
lr
�
;

where s2
G is genetic variance, s2

GE is genotype · environment inter-
actions variance, se

2 is error variance, E is the number of environ-
ments, and r is the number of replications in each environment.

Association analysis
Asubsetof 2000SNPmarkerswere randomly selected from10,736SNPs
that remained after removing SNPs with missing values.10%; minor
allele frequency of,10%; and physical position interval ,50 kb. This
subset of SNP markers was used for STRUCTURE analysis (Yu et al.
2009). The population structure was determined using an admixture
model with correlated allele frequency in software STRUCTURE v2.3.3
(Pritchard et al. 2000). A burn-in of 10,000 iterations followed by
100,000 Monte Carlo Markov Chain replicates was conducted to test
k values (number of subpopulations) in the range of 2–9. Each k was
replicated four times, and most lines were assigned into clusters with a
probability .0.6 (Falush et al. 2003).

Principal Component Analysis (PCA) was conducted in Eigensoft
V3.0 software (Price et al. 2006; Patterson et al. 2006). Genetic distance-
based neighbor-joining (NJ) analysis and a genetic kinship matrix were
conducted using TASSEL V3 (Bradbury et al. 2007) and the tree visu-
alized using FigTree v1.3.1 (Rambaut and Drummond 2009). Linkage
disequilibrium (LD) measured as D9 was calculated using TASSEL
software (Bradbury et al. 2007). Haplotype was built using the
LD-based method as described by Gabriel et al. (2002), and SNPs are
considered to be in the same haplotype or in “strong LD” if the one-side
upper 95% confidence bound on D9 was .0.98 and the lower bound
was above 0.7, and was calculated using PLINK v1.07 software (Purcell
et al. 2007).

A mixed linear model that included BLUEs, marker, kinship matrix
(K), and PCA was conducted using TASSEL software (Bradbury et al.
2007). Haplotype generated by PLINK and haplotype genotypes were
used to conduct association mapping using the mixed linear model
with PCA and Kinship in TASSEL software.

QTL mapping in biparental populations
Linkagemapswere constructed using IciMapping v3.2withKosambi
method for map distance calculation (Kosambi 1944; Wang et al.
2012a). The total map length for POP1 (DH population) was
1260 cM and included 166 SNPs and the average marker interval
was 8.83 cM; the map length of POP2 was 991 cM and included
154 SNPs and the average marker interval was 8.93 cM. Linkage
maps were not constructed for POP3 and POP4 as the number of
retained markers was small (118 for POP3 and 93 for POP4). The
Inclusive Composite Interval Mapping (ICIM) method in IciMap-
ping v3.2 was used for QTL mapping (Li et al. 2008; Wang et al.
2012a). ICIM retains all the advantages of composite interval map-
ping (CIM) over interval mapping and avoids the possible increase
of sampling variance and the complicated background marker se-
lection process that are in CIM (Li et al. 2007, 2008). The step of
ICIM was set to 1 cM, and the LOD threshold was set to 2.5. The
total proportion of phenotypic variance explained by the detected
QTL was calculated by fitting all significant SNPs simultaneously in
a linear model to obtain R2

adj. The proportion of the genotypic
variance explained by all QTL was calculated as the ratio of pG =

Figure 1 The number of SNP markers per chromosome (A) SNP marker missing value (B) minor allele frequency (C), and marker heterozyosity (D)
among 854 maize inbred lines that were genotyped.
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R2
adj/h2 (Gowda et al. 2015). The Single Marker Analysis (SMA)

method in IciMapping V3.1 software was used for POP3 and POP4
QTL mapping, since the number of polymorphic markers were not
enough for linkage map constriction. BioMercator V3.0 software
(Arcade et al. 2004) was used to integrate significant markers to the
maize physical map of the B73 reference genome (B73 RefGen_v1).
The physical positions and sequence of SNP markers were ob-
tained from the Illumina public ftp site (ftp://ussd-ftp.illumina.
com/Whole%20Genome%20Genotyping%20Files/Archived_non-
Human_Products/Maize_SNP50/).

Based on GWAS results, the sequences flanking SNP markers
significantly associated with FER resistance were used to perform
BLAST searches against the “B73” RefGen_v2 (MGSC) (http://blast.
maizegdb.org/home.php?a=BLAST_UI) to obtain the physical position
of significant SNPs.

Data availability
The original genotype and phenotype of the GWAS population are
available in File S1 and File S2 and the original data of the four bi-
parental populations are available in File S3 (POP1), File S4 (POP2),
File S5 (POP3), and File S6 (POP4).

RESULTS

Phenotypic data analysis of GWAS panel
Significant phenotypic variation for FERwas observed in both the Agua
Fria andTlaltizapanexperiments.Themeanear rot severity ranged from
0 to 87%with an overallmean of 22.96% inTL11, from0 to 47%with an
overallmean of 7.76% inAF11, and from 0 to 61%with an overallmean
of 9.6% in AF10. Disease severity was higher in Tlatizapan than Agua
Fria, possibly revealing differences in aggressiveness of F. verticilioides

Figure 2 Estimation of number of subpopulations (K) in 818 maize inbred lines used for GWAS analysis using unlinked 2000 random SNP markers.
(A) Population structure of maize inbred line panel from K = 2 to K = 6. The genotype of each line on the figure is represented by a colored line
where each color reflects the membership of a cultivar in one of the K clusters. (B) Estimation of number of subpopulations (K) in maize inbred line
panel using dK values.
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strains used. In the combined analysis, mean ear rot ranged from 0 to
74% with an overall mean of 16.03% (Table 1). The distribution of FER
scoring in individual and combined environments was close to normal
with a skew toward the lower level of infection (Figure S1). Reflect
kurtosis analysis revealed that ear rot resistance was continuously dis-
tributed, revealing the quantitative nature of F. verticillioides resistance
(Figure S1 and Table 1). Both genotypic components of variance (s2

G)
and genotype · environment interaction (s2

GE) were significant (P ,
0.01), from the combined ANOVA analysis, and s2

G was also signif-
icant in the three single environments analysis. The repeatability (H2)
of FER scores was generally high, ranging from 0.89 in TL11 to 0.71 and
0.68 in AF11 and AF10, respectively. In combined analysis, the broad-
sense heritability (H2) of the trials was 0.66, indicating that F. verticil-
lioides resistance was controlled by genetic factors and that the data
could confidently be used for accurate mapping of F. verticillioides
resistance genes.

Genetic and phenotypic correlation between ear rot aspect, ear rot
score, and PIAwere significant, ranging from r= 0.90 to 0.98 (Table S2).
Therefore, subsequent data and GWAS analyses were conducted using
PIA as a FER parameter. Genetic and phenotypic correlations between
environments were highly significant, and the phenotypic correlation
between combined mean and mean of the three single environments
was significant (Table 1). Low but significant correlations were ob-
served between FER (PIA) and DTS (Table 2). However, a moderate
genetic correlation (r = 0.38) was observed between FER resistance and
stem lodging. This is expected as F. verticillioides can grow within the
maize plant as an endophyte, and can become pathogenic and incite
stalk rot when conditions become stressful to the plant.

Response of 940maize inbred lines to FER revealed several lines that
consistently had mean disease severity scores ,5% across the three
environments. Analysis of combined phenotypic data from the differ-
ent environments identified 63 maize inbred lines that were highly
(PIA ,5%) resistant to FER (Table S3). These tropical inbred lines
can immediately be used as a source of FER resistance in breeding
programs.

Phenotypic data analysis of QTL mapping populations
Significant phenotypic variation for FER was observed for the four
biparental populations (Table S5). For all populations, genotypic com-
ponents of variance (s2

G) were significant (P , 0.01) from the single

environment ANOVA analysis. For combined ANOVA, both geno-
typic components of variance (s2

G) and genotype by environment in-
teraction (s2

GE) were significant (P , 0.01) for POP1 and POP2,
revealing that F. verticillioides populations in the two environments
might have been different. In combined analysis, the broad-sense her-
itability (H2) of the trials was 0.74 for POP2 and 0.52 for POP1. The
repeatability was generally high for each single environment, for exam-
ple, the repeatability of POP1 in the TL12A environment was 0.73 and
in AF12A was 0.69. Those results indicate the data could confidently be
used for QTL mapping.

Genotypic characterization of GWAS panel
A total of 56,110 SNPs were generated for 854 maize inbred lines using
the Illumina maize SNP50 BeadChip. The number of SNPmarkers per
chromosome ranged from 3965 SNPs on chromosome 10 to 8625 SNPs
on chromosome 1 (Figure 1). The average SNPmissing value was 7.0%
and 2112 SNPs (3.76%) had amissing value.40%.Of the 56,110 SNPs,
14.6% had a MAF (minor allelic frequency) ,0.05, while 55.8% had
a MAF .20%. Most of the markers (96.3%) had a heterozygous
rate ,2.5%, and only 0.01% had a heterozygosity .40%. After elimi-
nating SNPmarkers with amissing value.40% andMAF,5%, a total
of 43,424 SNPs were retained for GWAS.

From the 940 maize inbred lines evaluated against FER, 818 lines
were included in GWAS analysis, after removing lines with .20%
heterozygosity and those with .20% missing SNP markers (Figure
S2). Population structure estimated using 2000 random SNPs and the
software STRUCTURE v2.3.3 divided the inbred lines into three sub-
groups (Figure 2). Using k = 3, 97.3% of the maize inbred lines were
assigned to three groups, and only 6.8% of the lines were assigned into
mixed population (Figure 2). The largest subgroup (blue color in Figure
2 of the K = 3) was composed on germplasm coming from different
breeding programs of CIMMYT, including the lowland breeding pro-
gram, physiology, pathology, and programs in Africa. Most inbred
lines in the second subgroup (red color in Figure 2 of K = 3) comprised
of germplasm derived from CIMMYT’s drought tolerant population
LaPostaSeq. The third subgroup (olive green color in Figure 2 of K = 3)
contained germplasm mainly from CIMMYT’s lowland breeding
program. NJ tree constructed using 43,424 SNPmarkers and 818maize
inbred lines clustered the lines into three major groups (Figure S3), and
the grouping was confirmed using PCA analysis (Figure S4). The dK

Figure 3 Manhattan plot of genome-wide asso-
ciation analysis (GWAS) for FER resistance with
mixed linear model and combined phenotypic
data from three environments: (A) single marker
GWAS; (B) haplotype-based GWAS. The vertical
axis indicates 2log10 of P-value scores, and the
horizontal axis indicates chromosomes and phys-
ical positions of SNPs.
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result from STRUCTURE analysis and the absolute difference of eigen-
value between PCs indicted there were three major subgroups in the
GWAS panel (Figure 2 and Figure S5). The results obtained following

STRUCTUE, PCA, and NJ tree cluster analyses were consistent; there-
fore, the first three PCAs were used as a covariate in the mixed linear
model in GWAS analysis.

n Table 3 SNP and candidate genes significantly associated with FER resistance and detected through single marker GWAS

#a SNP Bin Positionb MAFc P value R2 Candidate Genes SNP Location Annotation

S1 PUT-163a-16926058-1127 1.00 2,786,055 0.39 9.16E204 0.014 GRMZM2G041881 3 UTR Nascent polypeptide-
associated complex

S2 PZE-101018023 1.01 10,506,267 0.20 9.64E204 0.014 GRMZM2G028469 Promoter —

S3 SYN19964 1.11 285,314,047 0.27 5.97E204 0.015 GRMZM2G110295 3 UTR Antifreeze protein
S4 SYN3011 1.11 286,228,712 0.14 6.25E204 0.015 GRMZM2G178341 3 UTR Ribosomal protein S13
S5 PZE-102018300 2.02 8,733,661 0.44 2.54E204 0.018 GRMZM2G443445 Exon GroES-like
S6 PZE-102073397 2.04 53,583,850 0.13 5.29E204 0.017 GRMZM2G069093 Promoter Plant peroxidase
S7 PZE-103018799 3.03 10,791,638 0.26 1.99E204 0.019 GRMZM2G024551 3 UTR —

S8 PZE-103079779 3.05 128,563,291 0.13 8.10E204 0.015 GRMZM2G175968 Promoter —

S9 SYN24165 3.06 187,947,934 0.26 6.02E204 0.015 GRMZM2G085392 Exon Dense granule Gra7 protein
S10 PZE-103149185 3.07 201,056,001 0.29 2.17E204 0.017 AC207628.4 Intron IQ calmodulin-binding region
S11 PZE-104001384 4.01 1,497,071 0.22 2.61E204 0.018 GRMZM2G156346 Promoter Flagellar motor switch protein
S12 PZE-104025032 4.04 29,025,217 0.39 5.31E204 0.016 Intergenic — —

S13 SYN6472 4.08 183,999,530 0.41 9.27E204 0.014 GRMZM2G115499 Exon —

S14 PZE-104130779 4.09 217,656,184 0.33 3.27E204 0.017 GRMZM2G702806 Exon 2-oxoglutarate (2OG) and
Fe(II)-dependent oxygenase
superfamily protein

S15 PZE-104130780 4.09 217,656,207 0.33 3.76E204 0.016 GRMZM2G702806 Exon 2-oxoglutarate (2OG) and
Fe(II)-dependent oxygenase
superfamily protein

S16 PZE-104130783 4.09 217,656,309 0.33 1.97E204 0.018 GRMZM2G702806 Exon 2-oxoglutarate (2OG) and
Fe(II)-dependent oxygenase
superfamily protein

S17 PZE-105024161 5.02 11,879,005 0.21 7.66E204 0.014 Intergenic — —

S18 PZE-105029276 5.02 15,202,871 0.45 5.64E205 0.021 Intergenic — —

S19 PZE-105029277 5.02 15,202,993 0.44 1.57E204 0.018 Intergenic — —

S20 SYN32921 5.03 72,324,287 0.09 1.52E204 0.021 GRMZM2G029879 Intron Cyclin-related
S21 PZE-105116484 5.04 172,983,404 0.17 5.06E205 0.021 GRMZM2G128146 Promoter Glucose/ribitol dehydrogenase
S22 PZE-105116502 5.04 172,990,198 0.16 1.32E204 0.018 GRMZM2G128228 Exon —

S23 PZE-106068510 6.05 121,834,796 0.31 2.69E204 0.017 GRMZM2G341027 Exon —

S24 SYN12691 6.07 164,074,687 0.37 8.67E204 0.014 Intergenic — —

S25 PZE-108104835 8.06 158,591,683 0.41 7.58E204 0.014 GRMZM2G002135 5 UTR Phospholipid/
glycerol acyltransferase
family protein

S26 PZE-109011484 9.01 11,972,127 0.14 9.39E204 0.014 GRMZM2G467169 3 UTR —

S27 PZE-109031748 9.03 37,162,489 0.23 5.06E204 0.015 GRMZM2G034318 Promoter —

S28 PZE-109031963 9.03 37,423,712 0.17 6.24E205 0.020 Intergenic — —

S29 PZE-109050938 9.03 85,677,755 0.24 3.63E204 0.016 GRMZM2G095206 Exon Glucose/ribitol dehydrogenase
S30 PZE-109050944 9.03 85,678,508 0.24 4.77E204 0.016 GRMZM2G095206 5 UTR Glucose/ribitol dehydrogenase
S31 SYN6661 9.08 150,241,000 0.14 7.86E204 0.014 GRMZM2G148057 Intron Kinase interacting (KIP1-like)

family protein
S32 PZE-110012997 10.02 11,675,413 0.29 2.50E204 0.017 GRMZM2G413943 Exon —

S33 PZE-110022153 10.03 30,829,449 0.10 8.33E205 0.019 GRMZM2G010669 5 UTR Transcription factor, MADS-box
S34 PZE-110022154 10.03 30,829,471 0.10 5.00E205 0.021 GRMZM2G010669 5 UTR Transcription factor, MADS-box
S35 PZE-110022412 10.03 31,526,825 0.14 6.75E204 0.014 GRMZM2G560307 Promoter —

S36 PZE-110022609 10.03 32,154,695 0.14 2.11E204 0.017 GRMZM2G544512 Promoter —

S37 PZE-110022613 10.03 32,155,942 0.14 5.81E204 0.015 Intergenic — —

S38 PZE-110022625 10.03 32,159,272 0.14 9.98E204 0.013 Intergenic — —

S39 PZE-110022694 10.03 32,402,406 0.13 1.36E204 0.018 Intergenic — —

S40 PZE-110022708 10.03 32,475,067 0.14 2.00E204 0.017 Intergenic — —

S41 PZE-110022724 10.03 32,493,898 0.14 2.74E204 0.017 GRMZM2G027431 5 UTR Putative endonuclease or
glycosyl hydrolase

S42 PZE-110022808 10.03 32,797,753 0.15 4.13E204 0.016 Intergenic — —

S43 PZE-110022827 10.03 32,979,981 0.14 1.59E204 0.018 GRMZM2G109783 Promoter Protein kinase C
S44 PZE-110022852 10.03 33,120,424 0.13 9.15E205 0.019 Intergenic — —

S45 PZE-110022891 10.03 33,194,481 0.14 6.54E204 0.015 Intergenic — —
a
The name used in the software BioMereator V3.0.

b
The physical position based on B73 reference genome v1 (B73 RefGen_V1).

c
Minor allele frequency.
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Association mapping for FER resistance
GWASanalysisusing combinedphenotypicdata identified45SNPs that
were significantly associated with FER resistance with P value ,1023

(Figure 3A). The markers were distributed on all chromosomes except
chromosome 7; and the number of SNPs per chromosome ranged from
1 on chromosome 8 to 14 on chromosome 10. The most significant
SNP was located on chromosome 10 (PZE-110022154) with the lowest
P value (P , 5 · 1025) and it explained 2.06% of the phenotypic
variation. The second SNP with lowest P value was located on chro-
mosome 5 and it also explained 2.06% of the phenotypic variation.
Detailed information of 45 SNPs significantly associated with FER re-
sistance is provided in Table 3. Genome-wide Manhattan plots for
single environment analysis are attached (Figure S6). Quantile-quantile
plots showed that population structure was controlled well by the
mixed linear model (Figure S7).

Haplotype built based on LD as described by Gabriel et al. (2002)
resulted in 7063 haplotypes (Table S4). The maximum number of
markers per haplotype was 19, the minimum 2, and the average number
was 2.96 SNPs per haplotype. Haplotype-based GWAS in a mixed linear
model identified 15 haplotypes that were significantly associated with
FER resistance and these were distributed in bin 2.05, 5.03/5.04, 7.02,
8.03/8.04, and 10.03 (Figure 3B). Haplotype analysis increased the power
of marker detection; for example, haplotype 5076 on chromosome/bin
7.02 that was significantly associated with FER resistance (P value =
4.45 · 1027) was not detected in single marker GWAS analysis (Table
4). However, some markers were detected by both single marker and
haplotype-based GWAS analysis. Haplotype 4168 on chromosome
5 accounted for 3.1% of variation for FER and the two markers PZE-
105116484 and PZE-105116502 associated with this haplotype explained
2.1 and 1.8% of phenotypic variation for FER, respectively (Table 4).

QTL mapping of FER resistance
Five QTL were detected in the DH population (POP1); two on chro-
mosome 1 and one eachon chromosomes 2, 3, and 5 (Table 5). TheQTL

on chromosome 2 accounted for 15.41% of the total phenotypic varia-
tion observed for FER in this population; while the QTL on chromo-
some 5 explained 13.56% of the phenotypic variation (Table 5).
Combined, the five QTL detected in POP1 explained 49% of the total
phenotypic variance observed for FER. For POP2, an F2:3 population, six
QTL were detected that together accounted for 25% of the observed
phenotypic variation. TheQTL on chromosome 1 accounted for 11.36%
of the phenotypic variation for FER resistance. The QTL in bin 4.03/04
explained 9.27% of the phenotypic variance, while that in bin 10.03
accounted for 7.82% of the phenotypic variance (Table 5). SMA was
used for QTL mapping for POP3 and POP4 as few polymorphic
markers were detected in these populations. For POP3, sixmarkers were
significantly associatedwith FER resistance and these were distributed in
three regions of chromosome 5; bins 5.03, 5.04, and 5.05 (Table 5). The
phenotypic variation for FER explained by these markers ranged from
4.56 to 6.73%, revealing that these wereminorQTL. The SNP in bin 5.04
had the greatest effect, explaining 6.73% of the observed phenotypic
variance for FER. For POP4, four markers were associated with FER
resistance and these were in bin 2.04, 2.06, and 2.07 (Table 5). The
phenotypic variation explained by these markers ranged from 12.56 to
15.84% and the SNP in bin 2.07 had the largest effect, explaining 15.84%
of the phenotypic variance for FER resistance (Table 5).

Forty-five single SNPmarkers and 15 haplotypes identified through
GWAS, together with 15QTL identified through linkagemapping were
integrated onto a maize physical map using the software BioMereator
V3.0 (Sosnowski et al. 2012). The map generated by the software was
convenient for visualizing QTL and significant SNPs together. Eight
common loci were identified on six chromosomes; on chromosome/bin
2.04, 3.06, 4.04, 4.08, 5.03, 5.04, 9.01, and 10.03 (Figure 4). The QTL on
chromosome 2 in bin 2.04 was detected in two biparental populations
as well as single marker GWAS. The chromosome 5 (bin 5.04) locus
was detected in one biparental population and by both single marker
and haplotype GWAS. The locus on chromosome 10 bin 10.3 con-
tained 14 significant SNP markers, one haplotype and one QTL.

n Table 4 Haplotypes and respective candidate genes that were significantly associated with FER resistance detected through haplotype-
based GWAS

#a Haplotype Bin
First marker
positionb

End marker
positionb

SNPs
Number

Alleles
Number P value R2 Candidate Genes Annotation

H1 1459 2.05 88,710,768 88,847,068 4 5 8.94E204 0.027 AC204390.3 —

H2 1460 2.05 89,154,656 89,280,724 8 6 7.50E-04 0.032 GRMZM2G091313 —

H3 1467 2.05 91,759,712 91,845,565 5 5 9.00E-05 0.031 GRMZM2G562083 —

H4 3606 5.02 15,202,871 15,202,993 2 4 5.04E204 0.023 GRMZM2G100412 Oxidation reduction
H5 3693 5.03 36,846,799 37,030,576 11 6 3.96E204 0.031 GRMZM2G350853 —

H6 4168 5.04 172,983,404 173,032,965 4 7 4.96E204 0.031 GRMZM2G128146 Glucose/ribitol
dehydrogenase

H7 5049 7.02 45,334,864 45,530,990 4 3 1.09E205 0.031 GRMZM2G058128 —

H8 5053 7.02 46,245,964 46,406,735 8 9 7.02E204 0.041 GRMZM2G095557 —

H9 5075 7.02 53,371,838 53,372,042 2 3 5.16E204 0.020 GRMZM2G023184 DNA topological
change

H10 5076 7.02 53,609,623 53,610,328 2 3 4.45E207 0.039 GRMZM2G513532 —

H11 5080 7.02 55,590,091 55,778,923 4 6 5.13E206 0.043 GRMZM2G048257 Zinc ion binding
H12 5083 7.02 56,459,593 56,460,086 2 4 8.02E204 0.022 — —

H13 5754 8.03 86,545,938 86,546,527 2 4 1.09E204 0.027 GRMZM2G415172 C5YXL1_SORBI Putative
uncharacterized protein
Sb09g019530

H14 5923 8.05 125,354,692 125,362,629 2 4 4.49E204 0.023 AC197021.3 Zinc finger family
protein

H15 6676 10.03 30,829,449 30,829,471 2 2 7.74E205 0.020 GRMZM2G010669 Transcription factor,
MADS-box

a
The name used in the software BioMereator V3.0.

b
The physical position based on B73 reference genome v1 (B73 RefGen_V1).
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DISCUSSION

Resistance donor
Developing host resistance is the preferred strategy for managing FER,
especially for smallholder farmersacross the tropics,who largelyproduce
maize for theirownconsumption,andoften lackresources toadoptother
control strategies. However, effective use of this strategy requires iden-
tification of sources of resistance that are stable and effective across
environments. We evaluated 940 maize inbred lines in three environ-
ments and identified 63 inbred lines that were highly resistant to F.
verticillioides. These sources of FER resistance complement a few that
have been reported in tropical germplasm (Pérez-Brito et al. 2001; Small
et al. 2012). The broad-sense heritability (H2 = 0.66) was high, revealing
that FER resistance was genetically controlled, thus, significant im-
provements for FER resistance can be achieved through breeding. Fur-
thermore, the 63 inbred lines resistant to FER constitute a valuable tool
for understanding the genetic basis and architecture of FER resistance in
tropical maize germplasm. These lines should be evaluated in multiple
environments to confirm stability of FER resistance.

QTL for FER resistance
Forty-five SNPs and 15 haplotypes associated with FER resistance were
identified through single marker and haplotype-based GWAS and
15 QTL were identified through linkage mapping in four biparental
populations.Using the softwareBioMereatorV3.0, eight loci, containing
significant markers from GWAS and linkage mapping were identified
(Figure 4). Six loci on chromosomes/bin 3.06, 4.04, 4.08, 5.03, 5.04, and
10.03 are in regions that have previously been reported (Chen et al.
2012; Ding et al. 2008; Li et al. 2011; Pérez-Brito et al. 2001; Robertson-
Hoyt et al. 2006; Zhang et al. 2007), while two loci, on chromosomes/
bin 2.04 and 9.01 are new loci, identified in this study. Two of the loci
on chromosomes 4.04 and 9.01 are in regions containing genes encod-
ing putative proteins of unknown function, while six loci are in regions
that have been associated with stress tolerance, including FER resis-

tance. Results from this study concur with previous reports (Boling and
Grogan 1965; Zila et al. 2014) that FER resistance is a complex trait
conditioned by multiple genes with minor effects.

The loci on chromosome 5.04 contained two significant SNPs, one
haplotype and a QTL detected through linkage mapping. This chro-
mosome region has previously been reported in three independentQTL
mapping studies (Pérez-Brito et al. 2001; Robertson-Hoyt et al. 2006;
Ding et al. 2008). Candidate gene analysis revealed that this QTL was
in a region containing a putative protein encoding a glucose/ribitol
dehydrogenase protein that catalyzes the oxidation of D-glucose to
D-b-gluconolactone using NAD or NADP as a coenzyme in the cell
development. This gene belongs to a subset of short-chain dehydroge-
nase and reductase family of genes which are involved in different
biochemical processes including pathogen toxin reduction (Meeley
et al. 1992; Moummou et al. 2012).

The locus on the long arm of chromosome 4 (bin 4.08), detected
throughbothGWASand linkagemapping,haspreviouslybeenreported
(Li et al. 2011; Chen et al. 2012). Markers within this locus localized to a
putative protein of unknown function from maize. However, blastp
analysis revealed that it had high homology to Arabidopsis 2OG-Fe
(II) oxide reductase, a gene that is involved in regulating giberellic acid
and abscisic acid biosynthesis, which are involved in plant tolerance to
stress, including disease resistance (van Damme et al. 2008; Han and
Zhu 2011). Furthermore, chromosome 4.08 is a hot spot region for
disease resistance in maize and has been found to harbor resistance
QTL to eight maize diseases (Wisser et al. 2006). This would be a good
target for developing markers to simultaneously introgress multiple
disease resistance genes.

The chromosome 10.03 locus containing 13 SNPs and one QTL is
located in a region conditioning resistance to multiple maize disease,
including rp1 and rp5 that confers resistance to common rust (Wisser
et al. 2006). The candidate with the lowest P value in this region
encoded an MADS-box transcription factor (Parenicová et al. 2003).
MADS-box family genes are involved in controllingmajor aspects of plant

n Table 5 QTL mapping of FER resistance in four biparental populations

Population Name Bin Position Left Marker Right Marker LOD PVE (%) Adda Doma

POP1 Q1 1.04 83 PZA03168_5 PZA01267_3 3.68 5.68 4.55 —

POP1 Q2 1.07 166 PHM5480_17 PHM14614_22 4.77 5.99 24.68 —

POP1 Q3 2.03/04 56 PZA00590_1 PZA02378_7 11.15 15.41 7.57 —

POP1 Q4 3.06/07 70 PZA03647_1 PHM13673_53 3.62 4.26 3.96 —

POP1 Q5 5.03 56 PHM12992_5 PHM2524_4 10.24 13.56 7.1 —

POP2 Q6 1.03/04 2 PZA02490_1 PZA00240_6 8.08 11.36 6.67 20.53
POP2 Q7 3.05 54 PZB02179_1 PHM9914_11 4.85 6.11 24.58 2.15
POP2 Q8 4.03/04 26 PZA02358_1 PHM3112_9 6.53 9.27 25.83 0.09
POP2 Q9 4.06/08 50 PHM5572_19 PHM14618_11 3.19 3.93 21.03 5.29
POP2 Q10 9.01/02 8 sh1_12 PHM9374_5 3.47 3.94 3.74 1.12
POP2 Q11 10.03 36 PHM4066_11 PZA03607_1 5.28 7.82 5.45 0.06
POP3 Q12 5.03 32,599,447 PHM4647_8 — 3.06 4.96 0.09 20.02
POP3 Q13 5.04 164,230,168 PZA00148_3 — 4.19 6.73 0.11 20.01
POP3 Q13 5.04 166,468,431 PZA02981_2 — 4.1 6.59 0.11 20.01
POP3 Q13 5.05 179,060,561 PHM1899_157 — 3.08 4.99 0.09 0.02
POP3 Q13 5.05 179,953,106 PZA02633_4 — 2.81 4.56 0.09 0.03
POP3 Q13 5.05 180,603,220 PZA02356_7 — 2.81 4.56 0.09 0.03
POP4 Q14 2.04 40,967,991 PHM10404_8 — 7.95 12.56 3.9 20.55
POP4 Q15 2.06 166,659,759 PZA03692_1 — 10.2 15.8 4.12 21.11
POP4 Q15 2.07 176,000,581 PZA00224_4 — 10.22 15.84 4.04 20.59
POP4 Q15 2.07 194,696,039 PHM793_25 — 9.42 14.69 4 20.74

Name: indicates the QTL name used in the software BioMereator V3.0. Position: for POP1 and POP2 indicates the genetic position on the linkage map; for POP2 and
POP3 indicated the physical position of the marker on B73 reference genome (B73Ref_V1). LOD, logarithm of odds ratio; PVE, phenotypic variance explained; Add,
additive effect; Dom, dominance effect.
a
A positive value means the favorite allele comes from a resistant parent and negative value means the favorite allele comes from a susceptible parent.
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development, including embryo and seed development (Gramzow and
Theissen 2010), and may increase seed vigor and subsequently increase
tolerance to diseases.

Other important resistance loci identified in this study included
chromosomes 3.06 and 5.03. These two loci have previously been
reported associated with resistance to FER in twoQTLmapping studies
(Robertson-Hoyt et al. 2006; Ding et al. 2008). The locus on bin 3.06
encoded a dense granule Gra7 protein and the bin 5.03 locus was a
putative protein of an unknown function. In addition, two new loci
were identified, on chromosome 2.04 and 9.01. The chromosome 2.04
locus was associated with a plant peroxidase gene that is involved in cell
wall fortification (Kolattukudy et al. 1992). The chromosome 9.01 locus

encoded a protein of unknown function. Although many SNPs local-
ized to genic regions, the currently limited understanding of pathways
contributing to FER resistance restricts our ability to precisely predict
what genes might be involved in resistance to this complex disease.
However, information from this study provides a basis for further re-
search into elucidating the genetic architecture and pathways leading to
FER resistance in maize.

Haplotype-based GWAS analysis
Because of the rapid LD between markers, haplotype analysis may
providemore detection power compared to singlemarkerGWAS and is
more practical for breeding (Yan et al. 2011). Four methods are

Figure 4 Visualization of all loci associated with FER resistance that were detected in this study using the software BioMereator V3.0. The black
ovals represent the location of the eight loci detected by both GWAS and linkage mapping. The numbers on the right of the chromosome
indicate the physical position of the chromosome with million base pair as unit.
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commonly used to build haplotypes (Gabriel et al. 2002; Yan et al. 2009;
Gore et al. 2009; Lu et al. 2010, 2011; Ding et al. 2015a): (1) use of a fixed
number ofmarkers as a window to slide across the chromosome to build
the haplotype; (2) use of a fixed physical distance interval of 10 kb in
maize to build the haplotype; (3) use of gene-based physical position to
build the haplotype; and (4) use of LD information to put high LD
markers together to constitute a haplotype. The marker density in our
study was medium to high so we chose the LD-based haplotype build
method. Using this approach, haplotype GWAS detected some resis-
tance loci that were not detected by single marker GWAS, whereas the
single marker result was reflected in haplotype-based GWAS. This in-
dicates that haplotype-based GWAS has a high marker detection effi-
ciency but requires high densitymarkers to build a haplotype. On-going
genotyping by sequencing projects will furnish enough marker density
to exploit the advantages of haplotype-based GWAS.

Candidate genes colocalized with associated SNPs
SNPsandhaplotypes associatedwithFER resistancewere locatedwithin
or adjacent to 38 putative candidate genes which were obtained from
the MaizeGDB (http://www.maizegdb.org/) genome browser based
on physical position of significant SNPs, MaizeCyc database version
2.0 (http://maizecyc.maizegdb.org/). The Phytozome database (http://
phytozome.jgi.doe.gov/pz/portal.html) that was used for defining rele-
vant pathways and annotating possible functions of candidate genes
(Caspi et al. 2010) could annotate functions to 21 out of the 38 candi-
date genes (Table 3 and Table 4). Thirteen of the 45 SNPs localized to
intergenic regions, 10 were inside exons, nine were located in introns,
and nine were located in promoters; five localized to the 39 untranslated
region and five to the 59 untranslated region (Table 3). The most sig-
nificant SNP on chromosome/bin 5.04 was in a region associated with a
gene encoding a glucose/ribitol dehydrogenase, a protein that catalyzes
the oxidation ofD-glucose toD-b-gluconolactone usingNADorNADP
as a coenzyme. This gene family is a subset of short-chain dehydroge-
nases and reductases, involved in pathogen toxin reduction (Meeley
et al. 1992; Moummou et al. 2012). These results reveal the complex
nature of FER resistance in tropical maize, and indicate that various
mechanisms might be involved in conditioning FER resistance, includ-
ing complex biosynthesis processes, which also might include interac-
tions between multiple metabolic pathways.

Conclusion
This study identified a set of inbred lines that can potentially be used as
sources of resistance to develop hybrids with resistance to FER. Further
validationof thepotential sourcesof resistance inmultipleenvironments
is required, but the small numberof inbred linesmakes this process cost-

effective. Eight loci harboring FER QTL were identified through in-
tegratingGWASand linkagemapping results. Twoarenew lociwhile six
colocalized to loci that have previously been described (Chen et al. 2012;
Ding et al. 2008; Li et al. 2011; Pérez-Brito et al. 2001; Robertson-Hoyt
et al. 2006; Zhang et al. 2007). Some SNPs associated with these loci
localized to within or close to genes with known function. Candidate
gene analyses for significant SNPs provided targets for further research
to elucidate mechanisms of FER resistance. Our results confirmed ear-
lier reports that many genes are involved in FER resistance.
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