
INVESTIGATION

Shared Genomic Regions Between Derivatives of
a Large Segregating Population of Maize Identified
Using Bulked Segregant Analysis Sequencing and
Traditional Linkage Analysis
Nicholas J. Haase,* Timothy Beissinger,† Candice N. Hirsch,‡ Brieanne Vaillancourt,§,**
Shweta Deshpande,†† Kerrie Barry,†† C. Robin Buell,§,** Shawn M. Kaeppler,*,‡‡ and Natalia de Leon*,‡‡,1

*Department of Agronomy and ‡‡Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-
Madison, Madison, Wisconsin 53706, †Department of Plant Sciences, University of California Davis, Davis, California
95616, ‡Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota 55108,
§Department of Plant Biology and **Department of Energy Great Lakes Bioenergy Research Center, Michigan State
University, East Lansing, Michigan 48824, and ††Department of Energy, Joint Genome Institute, Walnut Creek, California 94598

ABSTRACT Delayed transition from the vegetative stage to the reproductive stage of development and increased
plant height have been shown to increase biomass productivity in grasses. The goal of this project was to detect
quantitative trait loci using extremes from a large synthetic population, as well as a related recombinant inbred line
mapping population for these two traits. Ten thousand individuals from a B73 · Mo17 noninbred population
intermated for 14 generations (IBM Syn14) were grown at a density of approximately 16,500 plants ha21. Flowering
time and plant height weremeasured within this population. DNAwas pooled from the 46most extreme individuals
from each distributional tail for each of the traits measured and used in bulk segregant analysis (BSA) sequencing.
Allelic divergence at each of the�1.1 million SNP loci was estimated as the difference in allele frequencies between
the selected extremes. Additionally, 224 intermated B73 · Mo17 recombinant inbred lines were concomitantly
grown at a similar density adjacent to the large synthetic population and were assessed for flowering time and plant
height. Using the BSA sequencing method, 14 and 13 genomic regions were identified for flowering time and plant
height, respectively. Linkage mapping with the RIL population identified eight and three regions for flowering time
and plant height, respectively. Of the regions identified, three colocalized between the two populations for flower-
ing time and two colocalized for plant height. This study demonstrates the utility of using BSA sequencing for the
dissection of complex quantitative traits important for production of lignocellulosic ethanol.
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Structural carbohydrates within maize stover have been proposed as an
important biomass source for the fermentation process of sugars into
lignocellulosic ethanol (Himmel et al. 2007; Lorenz and Coors 2008;
Lorenz et al. 2009), an alternative to grain starch, which is currently and
intensively used for ethanol production (Solomon et al. 2007; Yuan
et al. 2008). Maize accounted for approximately 36.8 million of the
hectares planted in the United States in 2013, with 33.6 million hectares
being harvested for grain production alone (USDA 2014). In a recent
report from the United States Department of Energy (DOE), maize crop
residues accounted for an estimated 70% of the annual grain crop
residues from 1998 to 2007 (Perlack and Stokes 2011). Therefore, in-
creasing the amount of corn stover biomass yield would have value in
supporting the emerging lignocellulosic biofuel industry.

Plant height (PH) is positively correlated with biomass yield in
maize and sorghum (Lubberstedt et al. 1997; Murray et al. 2008; Ritter

et al. 2008). The correlation between flowering time (FT) and PH, as
well the correlation of FT with other morphological traits related to
above-ground biomass production such as total leaf number through
the timing of vegetative to reproductive transition in maize, suggests
that FT has the potential to impact biomass yield (Irish and Nelson
1991; Yuan et al. 2008). Due to this relationship, both PH and FT were
chosen as model traits for this study. Furthermore, understanding
independent genetic regions that are responsible for these two traits
could ultimately help develop higher biomass yielding maize varieties
while maintaining appropriate ranges of maturity by ensuring that
changes in plant height would not greatly affect the flowering time
of an individual.

PH and FT are extensively studied phenotypic traits in maize.
Although these traits are relatively highly heritable, it is likely that only
a fraction of the genomic regions contributing to their variation are
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currently known. Traditional linkage mapping studies have identified
5–12 (6.7 average) and 1–12 (4.6 average) quantitative trait loci (QTL)
associated with PH and FT (silking date and days to anthesis), re-
spectively (Austin and Lee 1996; Beavis et al. 1991; Bohn et al. 2000;
Cardinal et al. 2001; Chardon et al. 2004; Tang et al. 2007; Zhang et al.
2011). Larger mapping populations, such as the United States Nested
Association Mapping (US-NAM) population, have uncovered numer-
ous small to moderate effect QTL and provide a more detailed dis-
section of the genetic architecture of these complex traits compared to
the small number QTL commonly observed in traditional linkage
populations (Buckler et al. 2009; Peiffer et al. 2014). However, pheno-
typing and genotyping such large collections can be both labor-intensive
and expensive to conduct. Bulk segregant analysis (BSA) using whole
genome sequencing data has been proposed as a method that can be
used to identify QTL for genetically complex traits (Ehrenreich et al.
2010).

BSA was originally proposed by Michelmore et al. (1991) to rap-
idly identify markers linked to particular traits of interest. Their ap-
proach involves a segregating F2 population generated from an initial
cross between two phenotypically diverse parents, which is then
scored for a phenotype of interest. Bulked DNA or RNA samples
are constructed from individuals that show contrasting phenotypes.
Genetic markers are then used to screen for differences between the
two DNA or RNA pools that associate with the trait of interest. BSA
has been mainly used in crop species either for the identification of
large effect QTL, such as disease resistance genes, or for mapping
qualitative mutations (Quarrie et al. 1999; Hyten et al. 2009; Venu-
prasad et al. 2009; Liu et al. 2012).

The availability of high-density genotyping technologies (Metzker
2010) have allowed for the rapid identification of single nucleotide
polymorphisms (SNPs) that may be associated with phenotypes of
interest, thereby increasing the ability to identify causative regions
controlling important traits. However, the cost of sequencing entire
populations can still be relatively high, and therefore is still not eco-
nomically feasible for the assessment of large numbers of recombinant
progenies. Genome reduction methods such as genotype-by-sequencing
(GBS) can help reduce the cost of genotyping the large numbers of
required individuals (Elshire et al. 2011). However, these technologies
also result in a high proportion of missing information (Beissinger et al.
2013).

Approaches that use whole genome sequencing of bulked pools of
DNA have been used to identify QTL or selected regions in model
organisms, such as yeast (Saccharomyces cerevisiae) and Drosophila
(Drosophila melanogaster) (Ehrenreich et al. 2010; Magwene et al.
2011; Turner et al. 2011). These model organisms allow for the gen-

eration of very large populations of segregating individuals. This ap-
proach has similarly been used for the identification of QTL in rice
(Takagi et al. 2013). When applied to a rice RIL population, colocal-
ization of the most significant QTL for resistance to rice blast was
observed between linkage mapping and whole genome sequencing on
bulked samples of extremes (Takagi et al. 2013). Additionally, this
study demonstrated that this method has the ability to detect QTL
for important agronomic traits, such as seedling vigor, using an F2-
derived rice population, of which some regions identified colocalized
with previously reported QTL from other mapping studies (Miura
et al. 2001; Fujino et al. 2008; Takagi et al. 2013).

The primary aim of this study was to use BSA sequencing in
conjunction with linkage mapping information to identify QTL for
two quantitative traits, PH and FT, important for producing
lignocellulosic ethanol. This was accomplished using phenotypic
extremes from a large segregating synthetic maize population grown
concomitantly with a related RIL population.

MATERIALS AND METHODS

Plant materials
The intermated B73 ·Mo17 (IBM) Syn14 population was used for the
BSA sequencing analysis. This population was derived from intermat-
ing the progenitor population, the IBM Syn10, for four additional
generations. The IBM Syn10 was derived by intermating the F2 gen-
eration from the initial cross of maize inbred lines B73 and Mo17 for
10 generations (Hussain et al. 2007). For the QTL analysis, 224 lines
from the IBM RIL population were used (see Supporting Information,
Table S1 and Table S2; Lee et al. 2002). These RILs were derived by
intermating the F2 generation from the initial cross of B73 ·Mo17 for
four generations before starting the process of selfing.

Phenotypic collection and analysis
Ten thousand segregating variants from the IBM Syn14 population
were planted in 2011 at the West Madison Agricultural Research
station in Madison, Wisconsin. To minimize plant-to-plant compe-
tition, a planting density of approximately 16,500 plants ha21 was
used. Plants were distributed in the field at a distance of 0.76 meters
on all sides of each plant. The IBM RILs were planted at the same
density as the IBM Syn14 population in a randomized complete block
design (RCBD) using two replications at that location. Additionally,
the IBM RILs were also planted at a density of approximately 49,000
plants ha21 in an RCBD at the same location with two replications.
The IBM RILs grown at the two different densities (16,500 and 49,000
plants ha21) are referred to herein as the IBM density trial.

For individual plants, FT was determined as the first day in which
50% of the tassel spike was exerting anthers. Using information
available on cumulative growing degree days (GDD) for Madison,
provided by the State of Wisconsin Department of Administration, this
measurement was then converted to GDD to pollen shed, and was only
recorded for the 226 earliest and 112 latest flowering individuals in the
population during the summer of 2011. PH, measured as the distance
(cm) from the soil surface to the flag leaf ligule, was also collected. Only
the 154 shortest and 158 tallest plants were recorded. The 46 most
extreme individuals from each tail of the distribution were then
selected for each trait measured (Table S3). PH and FT were also
determined on a plot basis for all IBM RILs grown using two different
planting densities. FT was recorded when half of the plot flowered,
according to the method outlined above. Additionally, PH was mea-
sured (as described above) on five healthy plants from each plot, and
plot means were calculated as the experimental unit for analysis.

Copyright © 2015 Haase et al.
doi: 10.1534/g3.115.017665
Manuscript received February 25, 2015; accepted for publication May 26, 2015;
published Early Online June 1, 2015.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supporting information is available online at www.g3journal.org/lookup/suppl/
doi:10.1534/g3.115.017665/-/DC1
Sequences are available in the Sequence Read Archive at the National Center for
Biotechnology Information (BioProject accession number PRJNA208216). Genotype
counts and frequencies for the filtered SNP set are available for download from the
Dryad Digital Repository (http://datadryad.org/resource/doi:10.5061/dryad.2mn50).
1Corresponding author: Department of Agronomy, University of Wisconsin-
Madison, 1575 Linden Dr, Moore Hall Room 459, Madison, WI 53706. E-mail:
ndeleongatti@wisc.edu

1594 | N. J. Haase et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/5/8/1593/6025376 by guest on 10 April 2024

http://www.g3journal.org/content/suppl/2015/06/01/g3.115.017665.DC1/017665SI.pdf
http://www.g3journal.org/content/suppl/2015/06/01/g3.115.017665.DC1/TableS1.pdf
http://www.g3journal.org/content/suppl/2015/06/01/g3.115.017665.DC1/TableS2.pdf
http://www.g3journal.org/content/suppl/2015/06/01/g3.115.017665.DC1/TableS3.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.017665/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.017665/-/DC1
http://datadryad.org/resource/doi:10.5061/dryad.2mn50
mailto:ndeleongatti@wisc.edu


Phenotypic data from the IBM density trial were analyzed using
SAS PROC MIXED version 9.2 (SAS Institute) with the following
mixed linear model:

Yijk ¼ mþ di þ RðDÞj þ Gk þ GDik þ eijk [1]

where Yijk is the response variable of the kth genotype (G) in the jth

replicate (R) nested in the ith density (D). The residual error eijk was
assumed to be independent and following a normal distribution
(�iidN(0,s2

e )). Genotype, replicate, and error were considered ran-
dom effects, whereas density was considered to be a fixed effect.
Additionally, best linear unbiased predictions (BLUPs), to be used
for QTL mapping, were calculated for each genotype in both densi-
ties separately using equation [1], removing density and genotype-
by-density from the model.

DNA extraction and sequencing
In the IBM Syn14 population, leaf tissue was collected from 92
random immature plants to be used as a control group. Inner husk
tissue was also collected from the 46 most extreme plants from each
distributional tail for both traits measured. Genomic DNA was
extracted for individual samples using a modified CTAB method
(Sanghai-Maroof et al. 1984). Equimolar DNA pools were then con-
structed from 46 extreme individuals for each distributional tail (i.e.,
early flowering, late flowering, tall PH, and short PH) and the 92
random control plants.

Libraries with a target insert size of 500 bp were prepared
according to the Illumina protocol (Illumina, Inc., San Diego, CA).
Libraries were sequenced using the Illumina HiSequation 2000 (San
Diego, CA) at the Joint Genome Institute (Walnut Creek, CA) to
generate 100 nt paired-end sequence reads for the early flowering pool
and 150 nt paired-end sequence reads for all other pools. Sequence
read quality was evaluated using the FastQC program (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/).

Generation of a Mo17 reference sequence
To generate a reference genome for Mo17 and thereby reduce bias in
read mapping, genomic reads were cleaned using the FASTX toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) prior to map-
ping. The fastx_clipper program was used to remove the Illumina
paired-end adapter sequences requiring a minimum sequence length
of 15 nt after clipping. Sequence reads were quality trimmed using the
fastq_quality_trimmer requiring a minimum quality score of 20 and
a minimum read length of 15 nt. All reads that passed through the
cleaning step above were mapped as single-end reads using Bowtie
version 0.12.7 (Langmead et al. 2009) to the B73 v2 reference sequence
(Schnable et al. 2009). An alignment was considered valid if there
were two or fewer mismatches relative to the reference sequence
(-v 2) and a read was required to have only one valid alignment
(-m 1). All other parameters were set to the default values.

Alignment files from all five pools were processed together using
the sort, merge, index, and pileup programs within SAMtools version
0.1.12a (Li et al. 2009) to generate a single unfiltered pileup file. For
the pileup program, the -B option was used to disable BAQ compu-
tation. Single nucleotide polymorphisms (SNPs) relative to the B73
reference assembly were identified for positions with at least 10·
coverage using only bases from reads with a quality score of 20 or
more and requiring a minimum allele frequency of 0.25. In total,
3,301,371 SNPs were called relative to the B73 reference sequence.
The corrected Mo17 reference sequence was generated by substituting
the alternative allele at all polymorphic positions.

Estimating B73 and Mo17 allele frequencies
To reduce bias between the pools due to sequence length, reads from
the five pools were further cleaned using the fastx_trimmer program
within the FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/
index.html), allowing a maximum sequence length of 100 nt. Reads
were simultaneously mapped as single-end reads to both the B73 v2
reference sequence as well as our Mo17 reference sequence using
Bowtie version 0.12.7 (Langmead et al. 2009) requiring a perfect
match (-v 0) and a unique alignment (-m 1). Only sequence reads
that mapped to either the B73 or the Mo17 reference sequence, but
not both, were retained. Alignments from the retained reads were
processed using the sort, merge, index, and pileup programs within
SAMtools version 0.1.12a (Li et al. 2009) to generate an unfiltered
pileup file for each of the five pools. Allele frequency estimates within
each pool were determined for the B73 and Mo17 alleles at the
3,301,371 previously identified SNP loci. Only reads with a quality
score of 20 or more were used to estimate allele frequencies. To obtain
accurate allele frequency estimates, if the coverage within a sequenced
pool was less than 20 or greater than 60.8 (mean across the pools plus
1 SD) the position was considered missing data within that pool.
Finally, positions that had a B73 allele frequency of less than 0.25,
greater than 0.75, or missing data in the control population were
discarded. After filtering, 1,096,729 and 1,149,984 polymorphic SNPs
were retained for further analysis for FT and PH, respectively. The
observed genome-wide mean for the estimated B73 allele frequency
was 0.4860.18 for early, 0.5260.15 for late, 0.5360.18 for short,
0.5260.19 for tall, and 0.5360.13 for control pools.

BSA sequencing and QTL mapping
B73 allele frequencies for each locus were estimated using the read
counts in each of the five pools as described above. Using a custom
script written in R version 3.1.1 (File S1; R Core Team 2014) using the
zoo software package (Zeileis and Grothendieck 2005), a standard
two-sided Z-test was then performed to determine the significance
of each difference in terms of allele frequency between the pools of
extreme individuals for each loci tested for both FT and PH and was
allowed to slide over windows such that

Z9 ¼ 1
d

Xd
j¼1

pjðtopÞ2 pjðbottomÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂j

�
12 p̂j

�
�ð 1

njðtopÞ
þ 1

njðbottomÞ
Þ

r ; [2]

p̂j ¼
xjðtopÞ þ xjðbottomÞ
njðtopÞ þ njðbottomÞ

[3]

where pj(top) and pj(bottom) were the estimated allele frequencies and
nj(top) and nj(bottom) were the observed number of reads for the
jth SNP between the two pools for the two traits measured (i.e.,
early minus late FT, or tall minus short PH plants). The expected
allele frequency, p̂j, was calculated using the number of reads for the
B73 allele (xj(top) and xj(bottom)) and the total number of observed
reads (nj(top) and nj(bottom)) for the jth SNP. This statistic was then
averaged across a window of size d, which was equal to 15 SNPs, and
then compared back to a standardized normal distribution to obtain
p-values for each SNP. The negative log10 of the p-values were then
used for identifying significant SNPs. Because statistics based on
windows of several markers were applied across regions of unknown
linkage disequilibrium between groups of markers, creating permutation
thresholds was not feasible for this study. Likewise, a Bonferroni cor-
rection was too conservative and FDR thresholds (Benjamini and
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Hochberg 1995) were generally too liberal. Therefore, to correct
for multiple testing, an outlier threshold of 0.5% used for the calling
of significant QTL was considered the most reasonable approach.
This approach was similar to those used for detecting selective
sweeps using pooled DNA samples for unidirectional and diver-
gently selected populations of maize (Beissinger et al. 2014; Hirsch
et al. 2014). The boundary of a significant region included all SNPs
with a –log10(p-value) over this threshold and the adjacent seven
SNPs upstream and downstream of the significant region, as these
markers were used to estimate the last significant SNPs within a re-
gion. To resolve peaks, a nonsignificant region of 5 Mb was required
between the left-most SNP of a significant region and the right-most
SNP of the prior significant region. This approach was also similar to
that used by Beissinger et al. (2014) while using whole genome
sequencing on bulked samples for scanning selection sites in a pop-
ulation of maize undergoing recurrent selection for prolificacy.

QTL mapping was performed separately on the IBM data for both
densities (16,500 plants ha21 and 49,000 plants ha21) from the sum-
mer of 2011 for both PH and FT. BLUPs for each genotype, used for
mapping, were calculated from a linear model for each density sepa-
rately. Mapping was performed on the marker set outlined and
provided in the work by Burton et al. (2015). Using the software
SEG-Map (Zhao et al. 2010), the authors imputed a parental phase
for markers generated from GBS to generate a total of 8224 recom-
bination bin breakpoints that were used as markers (Burton et al.
2015). Additionally outputted from SEG-Map was a conversion file
for genetic to physical positions on all estimated breakpoints. QTL
mapping was conducted using the stepwise multiple QTL mapping
function in the software program R/qtl (Broman et al. 2003). A per-
muted LOD threshold was determined for each trait mapped using
1000 permutations of a single QTL model with no covariates. LOD
intervals of 1.5 were then used to define the boundaries of significant
regions. Mapping was conducted using genetic positions, which were
converted to physical positions using the IBM map conversion file for
comparison to the BSA sequencing method.

RESULTS

Phenotypic evaluation
Phenotypic distributions for the IBM Syn14 population and IBM
RILs, both grown at low density, were compared for FT and PH
(Figure 1). Both traits showed larger amounts of transgressive segre-
gation of phenotypes within the IBM Syn14 population relative to the
IBM RILs, which is expected given the much greater number of indi-
viduals in the Syn14 population. PH varied from 109 to 211 cm in the
IBM RILs and from 85 to 280 cm in the IBM Syn14 population.
Additionally, the mean of the 92 (46 from each phenotypic tail)

selected individuals in the IBM Syn14 population (198 cm), was
shifted toward taller individuals relative to the IBM RILs (159 cm).
This is consistent with dominance and heterosis for PH given that, on
average,�50% of the loci will be heterozygous in the individual Syn14
plants, whereas the IBM RILs are highly inbred. FT varied from 751 to
1103 GDD in the IBM RILs and from 528 to 1158 GDD in the IBM
Syn14 population. Similarly, the 92 selected individuals from the IBM
Syn14 population showed a shift in the mean toward earliness (858
GDD) relative to the IBM RIL (906 GDD). This observation is also
consistent with dominance and heterosis for FT.

Significant genetic variation was observed for the IBM lines grown
in the IBM density trial for both traits measured (ANOVA, P ,
2·10216). However, a significant genotype · density interaction was
also observed for FT (ANOVA, P = 0.03).

QTL detection in extreme individuals from the synthetic
heterogeneous population
Using the BSA sequencing method in the IBM Syn14 population with
a genome-wide significance threshold of 3.35, a total of 14 regions
were identified to be significantly associated with FT (Figure 2A; Table
1). The two most significant regions found for FT were 10.8 Mb and
18.9 Mb in size and located on chromosomes 5 and 8, respectively.
These regions were also the largest genomic regions identified. The
Mo17 allele conferred earliness for 10 out of the 14 regions, one of
which was the most significant region (second region on chromosome
8; Figure 2B).

The BSA sequencing method was also applied to the IBM Syn14
population for PH. A total of 13 regions were identified to be
associated with PH at a significance threshold of 6.34 (Figure 3A;
Table 2). The two most significant regions found for PH were 21.2
Mb and 9.7 Mb in size and located on chromosomes 4 and 6, re-
spectively. Seven of the 13 regions were located on chromosome
9 alone. Of the regions identified, B73 conferred the tall allele for 4
out of the 13 regions (Figure 3B). However, for the three most signif-
icant regions located on chromosomes 4, 6, and 9, Mo17 contributed
the tall allele.

QTL detection using linkage mapping with RILs
Data from the low density (approximately 16,500 plants ha21) plant-
ing of the IBM RILs in 2011 were used for the detection of QTL for
both FT and PH. Eight regions were identified for FT (LOD . 3.67;
Figure 2A) on chromosomes 1, 2, 8, 9, and 10, with the most
significant region being located on chromosome 8. Genetic posi-
tions were converted to physical positions to determine the relative
size for each of the regions identified (Table 1). The size of the 1.5
LOD intervals for these regions varied in size from 600 kb to 6.9 Mb
in length. The estimated parental effects of B73 for five of the eight

Figure 1 Phenotypic distributions for both mea-
sured traits. Distributions are shown for both the
intermated B73 · Mo17 (IBM) recombinant inbred
line (RIL) and Syn14 populations. Distributions for
the IBM RILs are for one trial grown in the summer
of 2011 at approximately 16,500 plants ha21 and
are averaged across two replicates. Distributions
for the IBM Syn14 population include the 92 se-
lected extreme individuals flowering time in (A)
growing degree days (GDD) and (B) plant height.
Purple indicates areas where the distributions over-
lap. Parental values for B73 and Mo17 are indicated
by blue and black arrows, respectively.
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regions identified were toward earliness. Additionally, three QTL
were identified for PH (LOD . 3.7; Figure 3A) on chromosomes 1,
4, and 9, with the most significant region located on chromosome
9. The 1.5 LOD intervals for these identified regions varied from
4.9 Mb to 9.1 Mb (Table 2). The estimated parental effects of B73
for the three regions identified were toward shorter plants. Despite
the relatively high heritability of the two traits measured, the QTL
model only explained 54% and 30% of the variation for FT and PH,
respectively.

Data from the high density (approximately 49,000 plants ha21)
planting of the IBM RILs in 2011 were also used for the detection of
QTL for both FT and PH. A total of six regions were identified for FT
(LOD. 3.66) located on chromosomes 1, 4, 5, 8, and 9. The 1.5 LOD
intervals for these regions varied from 1.3 Mb to 10.8 Mb in length
(Table 1; Figure 2A). The estimated parental effects of B73 for four
of the six regions identified were toward earliness. Additionally, of
the six regions identified, QTL located on chromosomes 1
(11.1 Mb–21.85 Mb), 8 (124.35 Mb–131.25 Mb), and 9 (17.65
Mb–24.35 Mb) coincided with QTL identified in the low-density
treatment (Table 1) and shared the same directionality of estimated
effects. A total of three regions were identified for PH (LOD . 3.62)
located on chromosomes 3 and 9, with 1.5 LOD intervals ranging
from 700 kb to 25.1 Mb in length (Table 2; Figure 3A). The estimated
parental effects of B73 for one of the three regions identified were
toward taller plants. Additionally, one QTL located on chromosome
9 (96.45 Mb–105.05 Mb) coincided with QTL identified in the low-
density treatment (Table 2) and shared the same directionality of esti-
mated effects.

Overlapping QTL region analysis
Overlapping regions between QTL detected in the Syn14 and low-
density IBM set were declared if the physical positions of a 1.5 LOD
interval from the traditional linkage mapping in the IBM RIL
population fell within the boundaries of a region identified using
the BSA sequencing method. Based on the physical position of the 1.5
LOD interval and the boundaries of the BSA sequencing method
overlap, three regions located on chromosomes 1, 2, and 8 were
identified for FT. The 1.5 LOD interval for linkage mapping extended

into the significant region identified using BSA sequencing on
chromosome 1. The 1.5 LOD interval for linkage mapping was
contained within the significant region identified using BSA sequenc-
ing for chromosome 8, whereas the 1.5 LOD interval encompassed the
BSA sequencing region on chromosome 2. The estimated effects for
the IBM RIL QTL regions were consistent with the individual
conferring the early or late allele in the IBM Syn14.

Two regions were identified as an overlapping region for PH.
The QTL identified on chromosome 9 using linkage mapping in the
16,500 plants ha21 treatment fell within the fourth region identified
on chromosome 9 (100.9–103.22 Mb) using the BSA sequencing
method. None of the other 12 regions identified using the Syn14
coincided with QTL found using traditional linkage mapping in the
IBM RILs at this density. There was an additional overlap found
between the 49,000 plant ha21 IBM treatment and the IBM Syn14
on chromosome 3 (125–150 Mb). As with flowering time, the di-
rectionality of the estimated effects for the IBM QTL was consistent
with the individual conferring the short or tall parental allele in the
IBM Syn14.

DISCUSSION
This study used a BSA sequencing approach to identify QTL for FT
and PH in a large synthetic population. When compared to QTL from
the IBM RIL population derived from the same parents, three regions
of concordance were observed between the two populations for FT
and two for PH. The BSA sequencing on the Syn14 population
identified a larger number of QTL for FT and PH relative to QTL
identified in the RIL population. It has been shown that in instances
where a trait is highly polygenic with moderate effects, larger mapping
populations are beneficial to increase statistical power and prevent
overestimation of QTL effects (Beavis 1998; Xu 2003; Broman 2001).
The population size of the IBM Syn14 relative to IBM RILs could have
potentially increased the power to detect additional moderate effect
QTL. This has also been shown through power analysis simulations
examining the relative effect of population size on QTL detection
using BSA (Magwene et al. 2011). Additionally, in populations that
have higher numbers of recombination between genotypes, it is
expected that repulsion and coupling phase linkages will be broken,

Figure 2 Genetic mapping of flowering time. (A)
Shown are both bulk segregant analysis (BSA)
sequencing and traditional linkage quantitative trait
loci mapping methods for flowering time. Blue and
gray profile, corresponding to the left y-axis, was
from the analysis of frequency differences between
extreme pools (BSA sequencing). Each single nucle-
otide polymorphism (SNP) position is estimated
using supporting information from the 14 neighbor-
ing SNPs. The green dotted line indicates a 0.5%
empirical outlier threshold for the BSA sequencing.
Black (16,500 plants ha21) and red (49,000 plants
ha21) LOD profiles, corresponding to the right y-axis,
show traditional linkage mapping results in the inter-
mated B73 · Mo17 (IBM) recombinant inbred lines
(RILs) determined using R/qtl. Only chromosomes
containing significant associations are displayed
(LOD .3.61). (B) Differences in the B73 allele fre-
quency between the early and late pools are shown.
Each SNP position is estimated using supporting in-
formation from the 14 neighboring SNPs.
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allowing for greater power to detect QTL. In the IBM RIL population
there are, on average, 57 effective recombination events per individual
(Fu et al. 2006). Using the known average effective recombination
events in the IBM RIL population and the expansion equations x
[j/2 + (2i21)/2i] and x[(2i+1 21)/2i] outlined by Beissinger et al.
(2013), where i is the number of generations a line has been inbred
and j is the number of generations of intermating, we can estimate the
average effective recombination events to be approximately 152 per
individual in the IBM Syn14 population (Beissinger et al. 2013;
Teuscher et al. 2005). Thus, the effective recombination in the IBM
Syn14 population is more than twice the amount observed in the RILs.
These considerations are consistent with recent studies using the
maize US-NAM population and a large association panel. Coupling
the use of large populations with the ability to utilize historical re-
combination, these studies elucidated the highly polygenic nature of
PH and FT (Buckler et al. 2009; Peiffer et al. 2014).

In addition to QTL regions identified in the IBM Syn14 population
not being identified in the IBM RIL population, the inverse was also
observed. This was contrary to the expected result that all regions
identified in the IBM RILs would have been detected using the larger
IBM Syn14 population due to the prior considerations discussed.
Although a larger population was grown, a relatively small portion of
the allelic variation was sampled and used for conducting statistical

tests. This is consistent with power analysis simulations conducted by
Magwene and Colleagues (2011) examining at the effects of sample
size and sequencing coverage on the detection of expected QTL.
In these simulations, population and sample sizes and sequencing
coverage of magnitude similar to the parameters used in this study
resulted in among the lowest power to detect QTL. It is possible that
the observed result was caused by a sampling effect generated by using
the higher selection intensity chosen (�0.5% selected in each tail out
of 10,000 plants). This observation is primarily a sampling issue in
that the individuals being used for the statistical test is a small sample
of the substantially larger population one is trying to describe (Beavis
1998; Xu 2003). Using sample sizes of one order of magnitude larger is
expected to have yielded the detection of more QTL within the IBM
Syn14 population.

Although the lower planting density used for the IBM Syn14 was
originally chosen to mitigate interplant competition between individ-
uals measured, it was observed that genotype · density interactions
existed for FT in the IBM RIL population. This was further examined
by mapping QTL for the two densities separately. Of the eight QTL
that were detected for FT at a planting density of 16,500 plants ha21,
only three coincided with QTL identified at a planting density of
49,000 plants ha21. Of the regions that were found to overlap between
the IBM RIL and Syn14 populations, those on chromosomes 1 and 8

n Table 1 Significant flowering time regions in intermated B73 3 Mo17 (IBM) Syn14 and IBM recombinant inbred lines

Chromosome
Left

Position
Right

Position

Most
Significant
Position

Length
(kb)

Density
(Plants ha21) p-value

Average
Allelic Effect

([Mo17-B73]/2)c

%
Variation
Explained Method

1a,b 11,100,000 21,850,000 13,450,000 10,750 49,000 1.18e-5 13.7 4.58 LM
1a,b 15,150,000 19,050,000 15,950,000 3900 16,500 6.71e-10 18.4 8.27 LM
1a,b 17,714,079 22,596,124 18,463,651 4882 16,500 7.65e-5 (+) — BSAS
1 180,711,478 183,050,137 181,687,511 2339 16,500 5.06e-5 (2) — BSAS
2 19,435,989 19,451,856 19,443,208 16 16,500 1.44e-4 (2) — BSAS
2a 233,150,000 234,950,000 234,650,000 1800 16,500 1.42e-7 15.5 5.79 LM
2a 233,684,368 234,219,869 234,209,964 536 16,500 3.85e-5 (+) — BSAS
4 14,822,931 17,108,700 16,180,806 2286 16,500 2.39e-4 (2) — BSAS
4 216,050,000 225,100,000 223,100,000 9050 49,000 7.95e-7 16.5 5.98 LM
5 127,205,233 127,239,082 127,215,227 34 16,500 3.09e-4 (+) — BSAS
5 175,599,023 186,393,293 178,591,431 10,794 16,500 7.97e-6 (2) — BSAS
5 212,950,000 214,450,000 214,150,000 1500 49,000 6.37e-7 17.1 6.09 LM
6 146,682,333 147,926,947 146,815,395 1245 16,500 3.92e-5 (+) — BSAS
7 27,603,027 27,613,362 27,607,683 10 16,500 4.22e-4 (2) — BSAS
7 39,302,108 39,309,960 39,306,816 8 16,500 3.20e-4 (2) — BSAS
8 18,487,954 21,420,111 21,411,057 2932 16,500 4.69e-5 (2) — BSAS

8a,b 123,504,621 142,361,278 131,086,800 18,857 16,500 4.13e-8 (2) — BSAS
8a,b 124,350,000 134,700,000 131,250,000 10,350 49,000 1.11e-7 218.3 7.02 LM
8a,b 127,700,000 133,050,000 131,250,000 5350 16,500 6.94e-16 230.7 15.29 LM
8 143,700,000 144,300,000 144,050,000 600 16,500 3.07e-9 20.8 7.56 LM
9 3,750,000 6,400,000 5,250,000 2650 16,500 4.92e-6 13.7 4.23 LM
9b 17,650,000 24,350,000 22,600,000 6700 49,000 6.02e-9 19.2 8.61 LM
9b 18,650,000 24,250,000 20,550,000 5600 16,500 1.15e-8 17.2 6.94 LM
9 152,250,000 153,550,000 152,750,000 1300 49,000 2.23e-7 216.8 6.65 LM
10 87,300,000 94,200,000 92,600,000 6900 16,500 9.07e-9 217.1 7.05 LM
10 99,225,452 102,316,547 102,314,009 3091 16,500 1.61e-4 (2) — BSAS
10 132,510,585 132,547,745 132,528,197 37 16,500 1.12e-4 (2) — BSAS
10 144,950,000 146,250,000 146,050,000 1300 16,500 7.17e-6 212.8 4.07 LM

Regions were identified using the bulk segregant analysis sequencing (BSAS) method using 92 phenotypically extreme individuals from the intermated B73 · Mo17
(IBM) Syn14 population and linkage mapping (LM) with 8224 bin markers for 224 IBM recombinant inbred lines grown in two replications at densities of approximately
16,500 and 49,000 plants ha21 in one environment. Also included are the left and right boundary positions, the most significant marker position, size of the interval, p-
value of the most significant position, estimated QTL effect, and percent variation explained by each RIL QTL.
a

Shared regions between the two populations.
b

Shared regions between densities.
c

Only directionality of allele frequency shift is reported for regions identified by BSAS in the IBM Syn14.
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were identified at both planting densities, whereas the region on chro-
mosome 2 was identified for the lower planting density only (Figure
2A). Likewise, one region that overlapped between populations for PH
was the only QTL identified to be shared between the two planting
densities (Figure 3A). Although this region was the most significant
region identified for linkage mapping at both densities, it was not the
most significant region for the IBM Syn14 population. There was also
an additional overlap between the Syn14 and RIL QTL identified in
the higher density treatment that was not identified in the lower-
density treatment (Figure 3A). These results suggest that either the
overlapping regions between the two populations or the BSA sequenc-
ing method are density-independent.

Due to the correlation between FT and PH (Irish and Nelson
1991), regions that were significant for both traits in the two
populations were identified. Overlaps between regions identified for
the two traits existed on chromosomes 4 (205–226 Mb; PH in Syn14
and FT in high density RIL), 5 (176–186 Mb; PH and FT in Syn14),
6 (138–147 Mb; PH and FT in Syn14), and 9 (4–6 Mb; FT in low-
density RIL and PH in high-density RIL). In each of these instances,
when B73 conferred the early allele, Mo17 conferred the tall allele, or
vice versa. This is consistent with the expectation that when overlap
between regions identified for the two traits was present, their pa-
rental contributions would be in opposite directions (i.e., short
plants would flower earlier).

A comprehensive list of 149 a priori candidate genes associated
with FT was previously compiled for comparison to homologous
sequences in maize (Chen et al. 2012). This list was used to search
for BSA sequencing QTL overlapping FT candidate genes. Three pu-
tative FT genes fell within a 18.9-Mb region on chromosome 8, one of
which, GRMZM2G700665, ZmRap2.7, and its regulatory element
(Vgt1) 70 kb upstream have been previously shown to be associated
with FT in maize (see Figure S1H) (Salvi et al. 2007). The maize
homolog for EMF1 (Aubert et al. 2001) and ZmRap2.7 both fell within
the overlapping region between the two mapping methods. A third
gene GRMZM2G363429, a homolog of BR6ox2 (Shimada et al. 2003),
while not contained within the overlapping region between the two
mapping methods, was still contained in a region identified using the

BSA sequencing method on chromosome 8. In total, 9 of the 14
regions identified either contained or were within 5 Mb of putative
candidate flowering time genes (see Figure S1).

Regions identified for PH were compared to physical locations of
known maize dwarf mutants and genes annotated for involvement
with synthesis, transport, metabolism, and signaling of gibberellins
and brassinosteroids. Both of these signaling pathways have been
shown to have an impact on plant height (Fernandez et al. 2009). Of
the regions identified for PH, only one region coincided with a candi-
date gene, whereas two others fell within 5 Mb of putative candidate
PH genes. GRMZM2G017606, a maize homolog of shi (Fridborg et al.
1999), fell within the 21.2 Mb region identified in the Syn14 popula-
tion on chromosome 4 (see Figure S2).

Additionally, a recent publication (Peiffer et al. 2014) identified
PH-associated QTL and quantitative trait nucleotides (QTN) using
joint-linkage QTL mapping and a joint-linkage-assisted genome-wide
association study (GWAS) within the maize US-NAM population,
along with GWAS in the maize North Central Region Plant Introduc-
tion Station (NCRPIS) diversity panel. The NAM population shares its
reference line B73 (McMullen et al. 2009) with the two populations
used in this study. The two most significant regions identified for PH
using the BSA sequencing method, on chromosomes 4 and 6, coin-
cided with regions identified in the maize NAM population. The BSA
sequencing region on chromosome 4 (205.2–226.3 Mb) encompassed
a QTN identified by joint-linkage-assisted GWAS, whereas the region
on chromosome 6 (138.2–147.9 Mb) encompassed two QTL identified
using joint-linkage QTL mapping in the maize NAM population
(Peiffer et al. 2014). Finally, the BSA sequencing region that over-
lapped with linkage mapping on chromosome 9 (100.9–103.2 Mb)
fell within approximately 2.4 Mb from a joint-linkage QTL in the
maize NAM population. For the NAM QTN identified on chromo-
some 4, B73 conferred the tall allele, whereas in the Syn14 population
Mo17 was conferring the tall allele. This is consistent with the nearby
NAM QTL (235 Mb) in which Mo17 is also conferring the tall allele.
Conversely, whereas the two NAM QTL located on chromosome 6
were in repulsion phase with one another, their cumulative additive
effect was in favor of Mo17 conferring the tall allele. Both this region

Figure 3 Genetic mapping of plant height. (A)
Shown are both bulk segregant analysis (BSA)
sequencing and traditional linkage quantitative trait
loci mapping methods for plant height. Blue and
gray profile, corresponding to the left y-axis, was
from analysis of frequency differences between
extreme pools (BSA sequencing). Each single nucle-
otide polymorphism (SNP) position is estimated
using supporting information from the 14 neighbor-
ing SNPs. The green dotted line indicates a 0.5%
empirical outlier threshold for the BSA sequencing.
Black (16,500 plants ha21) and red (49,000 plants
ha21) LOD profiles, corresponding to right y-axis,
show linkage mapping results in the intermated
B73 · Mo17 (IBM) recombinant inbred lines (RILs)
determined using R/qtl. Only chromosomes contain-
ing significant associations are displayed (LOD
.3.68). (B) Differences in the B73 allele frequency
between the tall and short pools are shown. Each
SNP position is estimated using supporting informa-
tion from the 14 neighboring SNPs.
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and that on chromosome 9 are consistent with the findings in the IBM
Syn14 population.

Likewise, of the regions identified for FT with BSA sequencing,
three coincided with regions identified using joint-linkage QTL
mapping in the maize US-NAM population. FT-associated NAM
markers located on chromosomes 1 and 8 (Buckler et al. 2009) were
encompassed by regions identified in the Syn14 population. Finally,
the 3-Mb region identified on chromosome 10 fell within approxi-
mately 500 Kb of an FT-associated NAMmarker (Buckler et al. 2009).
These colocalizations of QTL, for both of the traits examined in this
study, further demonstrate the ability of using the BSA sequencing
method in the context of a heterogeneous population such as the IBM
Syn14 to dissect quantitative traits in maize.

The feasibility of BSA on whole genome sequencing has already
been described in similar studies using model organisms such as yeast
(Ehrenreich et al. 2010; Magwene et al. 2011). Additionally, this ap-
proach has also been recently used in other important agronomic
systems such as rice (Takagi et al. 2013). All of these studies have
demonstrated the ability for the rapid detection of QTL from next-
generation sequencing on pooled samples. Methods that use BSA with
other next-generation sequencing technologies such as RNAseq have
also demonstrated the ability to map genes contributing to quantita-
tive traits in agronomic crops such as maize and wheat (Liu et al.
2012; Trick et al. 2012). However, some limitations may still exist for
these types of methods.

For instance, plant height in maize demonstrates a considerable
amount of heterosis (Uzarowska et al. 2007). Additionally, within this
experiment we observed a shift of the IBM Syn14 population toward
taller individuals relative to the IBM RILs, suggesting a potential mode
of dominance. Through simulations, it has been shown that BSA with
whole genome sequencing methods have difficulty detecting weaker

effect QTL demonstrating levels of dominance (Takagi et al. 2013).
In extreme situations of overdominance, where phenotypic effects
between two homozygous states are indistinguishable relative to the
phenotypic effect of the heterozygous state, it is expected that such
QTL would become undetectable, as would also be the case with
traditional linkage mapping in inbred populations. In such cases, it
would be beneficial to have genomic information on all selected
individuals rather than a pooled sample, and thus heterozygous
states would be distinguishable from homozygous states. In this
study, it is possible that all detected sites had lower to no domi-
nance effects, and with additional information on all selected indi-
viduals, more QTL contributing to PH and FT could have been
detected. Therefore, for traits that have higher levels of dominance
like plant height in maize, a single pooling method may not be as
applicable.

Typical QTL mapping studies rely on crosses of two or a small
number of lines, limiting the alleles that are sampled. Because the BSA
sequencing method relies only on differences in allele frequency, it is
expected that this method could be applied to different structured
populations of maize, especially those that do not rely on a biparental
lineage. Sequencing of pooled DNA samples has also been used to
scan for genomic sweeps generated through the process of artificial
selection for increased ear number, as well as seed size in maize
populations with multiple founder lines (Beissinger et al. 2014; Hirsch
et al. 2014). Using a modified Fst calculated between estimated allele
frequencies from sequenced samples of pooled individuals from the
latest cycle of selection compared to the pool of individuals from the
original population, 28 genomic regions were found to be affected by
the selection for ear number (Beissinger et al. 2014). When this same
approach was applied to a population divergently selected for 30
generations for seed size, 23 regions were identified to be causative

n Table 2 Significant plant height regions in intermated B73 3 Mo17 (IBM) Syn14 and IBM recombinant inbred lines

Chromosome
Left

Position
Right

Position

Most
Significant
Position

Length
(kb)

Density
(Plants
ha21) p-value

Average
Allelic Effect

([Mo17-B73]/2)c

%
Variation
Explained Method

1 202,350,000 207,100,000 206,250,000 4750 16,500 3.93e-6 4.8 6.57 LM
3a,b 124,500,000 149,550,000 129,050,000 25,050 49,000 1.88e-5 24.8 5.69 LM
3a,b 131,761,170 133,787,782 133,783,580 2027 16,500 1.62e-7 (2) — BSAS
4 5,650,000 10,550,000 9,850,000 4900 16,500 3.49e-6 4.9 6.65 LM
4 205,171,472 226,328,731 215,273,358 21,157 16,500 4.24e-11 (+) — BSAS
5 175,750,134 175,756,910 175,754,067 7 16,500 1.18e-7 (2) — BSAS
5 180,878,329 180,885,452 180,882,909 7 16,500 3.11e-7 (2) — BSAS
6 138,185,595 147,926,947 143,999,660 9741 16,500 1.39e-12 (+) — BSAS
8 92,560,823 92,576,189 92,568,159 15 16,500 1.92e-7 (2) — BSAS
9 4,950,000 5,650,000 5,250,000 700 49,000 7.36e-7 5.7 7.87 LM
9 38,353,868 38,359,043 38,357,148 5 16,500 3.18e-7 (+) — BSAS
9 61,337,181 61,343,573 61,340,803 6 16,500 3.54e-7 (+) — BSAS
9 81,804,594 82,892,514 81,814,361 1088 16,500 4.25e-7 (+) — BSAS

9a,b 96,000,000 105,050,000 99,050,000 9050 16,500 1.89e-11 7.2 15.19 LM
9a,b 96,450,000 105,050,000 99,050,000 8600 49,000 1.08e-11 7.7 16 LM
9a,b 100,914,404 103,222,106 100,917,919 2308 16,500 3.36e-7 (+) — BSAS
9 113,791,080 114,932,420 114,276,702 1141 16,500 7.11e-8 (+) — BSAS
9 121,580,239 125,181,457 122,087,889 3601 16,500 7.3e-9 (+) — BSAS
9 130,719,322 130,920,301 130,885,891 201 16,500 1.67e-7 (+) — BSAS

Regions were identified using the bulk segregant analysis sequencing (BSAS) method using 92 phenotypically extreme individuals from the intermated B73 · Mo17
(IBM) Syn14 population and linkage mapping (LM) with 8224 bin markers for 224 IBM recombinant inbred lines grown in two replications at densities of approximately
16,500 and 49,000 plants ha21 in one environment. Also included are the left and right boundary positions, the most significant marker position, size of the region, p-
value of the most significant position, estimated QTL effect, and percent variation explained by each RIL QTL.
a

Shared regions between the two populations.
b

Shared regions between densities.
c

Only directionality of allele frequency shift is reported for regions identified by BSAS in the IBM Syn14.
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for seed size when comparing the large and small selected populations
(Hirsch et al. 2014). When scanning for unidirectional selection from
cycle 0 for both larger or smaller seed size, 63 and 27 regions were
identified, respectively (Hirsch et al. 2014). In this context, the BSA
sequencing method could potentially be thought of as a single-gener-
ation selection experiment. Although gametes were not allowed to
recombine after each cycle of selection, allele frequencies are diver-
gently driven in the two selected pools.

This study demonstrates the feasibility of using a BSA sequenc-
ing approach to rapidly identify QTL for two traits important for
the production of lignocellulosic ethanol in maize while also
yielding a context for selection on genomic regions using a higher
selection pressure concurrently with a large population size.
Although the regions identified were too large for single gene
identification, these could still potentially be used for molecular
breeding efforts.
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