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ABSTRACT Obtaining genome-wide genotype data from a set of individuals is the first step in many
genomic studies, including genome-wide association and genomic selection. All genotyping methods
suffer from some level of missing data, and genotype imputation can be used to fill in the missing data and
improve the power of downstream analyses. Model organisms like human and cattle benefit from high-
quality reference genomes and panels of reference genotypes that aid in imputation accuracy. In nonmodel
organisms, however, genetic and physical maps often are either of poor quality or are completely absent,
and there are no panels of reference genotypes available. There is therefore a need for imputation methods
designed specifically for nonmodel organisms in which genomic resources are poorly developed and
marker order is unreliable or unknown. Here we introduce LinkImpute, a software package based on a k-
nearest neighbor genotype imputation method, LD-kNNi, which is designed for unordered markers. No
physical or genetic maps are required, and it is designed to work on unphased genotype data from
heterozygous species. It exploits the fact that markers useful for imputation often are not physically close
to the missing genotype but rather distributed throughout the genome. Using genotyping-by-sequencing
data from diverse and heterozygous accessions of apples, grapes, and maize, we compare LD-kNNi with
several genotype imputation methods and show that LD-kNNi is fast, comparable in accuracy to the best-
existing methods, and exhibits the least bias in allele frequency estimates.
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A primary goal of genomic research is to establish associations between
genotypes and phenotypes. Our understanding of human disease has
been significantly accelerated through studies linking genotypes with
disease phenotypes, primarily through the use of genome-wide associ-
ation (GWA) (e.g., Altshuler et al. 2008). Such associations also are
essential for accelerating breeding in agricultural species. For example,
genome-wide, single-nucleotide polymorphism (SNP) data are used
routinely in cattle to accelerate improvement with marker-assisted se-

lection and genomic selection (GS) (e.g., Hayes et al. 2009). The dis-
covery and exploitation of genotype2phenotype associations in an
increasing number of agricultural species has the potential to dramat-
ically accelerate food improvement (McClure et al. 2014).

No matter what the focal species is, the discovery of novel genoty-
pe2phenotype relationships most often requires genome-wide geno-
type data from a large number of samples. To date, genotyping
microarrays have been the technology of choice for acquiring these
data. Arrays are widely used for GWA studies in humans (Stranger
et al. 2011) and have also been developed for several agricultural species
[e.g., cattle (Matukumalli et al. 2009), rice (Zhao et al. 2011), grape
(Myles et al. 2010), and apple (Chagné et al. 2012)]. Although arrays
have proven to be effective in a few species, next-generation DNA
sequencing is becoming the method of choice for generating ge-
nome-wide genotype data in many organisms. Methods that use re-
duced representation libraries and multiplex barcoding have been
developed to generate genome-wide genotype data from next-genera-
tionDNA sequencing that are similar to the data generated from arrays
and are suitable for GWA and GS. For example, genotyping-by-
sequencing (GBS) (Elshire et al. 2011) produces genotype data useful
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for GS in wheat (Poland et al. 2012) and drastically reduces the cost of
linkage mapping in apple compared with arrays (Gardner et al. 2014).

Although genotyping microarrays produce somemissing data, GBS
produces an extremely sparse genotypematrixwithmostlymissingdata:
often hundreds of thousands of SNPs are discovered, but only a small
fraction of the SNPs (e.g.,,10%) passmissing data thresholds (Gardner
et al. 2014). Imputing the missing genotypes has been shown to im-
prove the power of methods such as GWA (Li et al. 2009) and so
genotype imputation is becoming an increasingly important compo-
nent of studies into genotype2phenotype relationships, especially
when data are collected using methods like GBS.

Most existing genotype imputationmethods, suchasBeagle (Brown-
ing and Browning 2007) and fastPHASE (Scheet and Stephens 2006),
rely on SNPs ordered according to a genetic or physical map. These
methods are most often used to impute genotypes in species with large
amounts of high-quality genotype data, including reference genomes
and reference genotype panels, like humans (e.g., International Hap-
Map 3 Consortium 2010) and cattle (e.g., Bovine HapMap Consortium
2009). These methods first phase the genotype data and take the phased
haplotype information into consideration when inferring missing ge-
notypes. Generic imputationmethods that do not rely on phasing, such
as k-nearest neighbors (Troyanskaya et al. 2001) or Missing Forest
(MF) (Stekhoven and Bühlmann 2012), are not specifically designed
for genotype data but can be used to impute missing genotypes. Al-
though there have been comparisons between generic imputation
methods (Stekhoven and Bühlmann 2012; Rutkoski et al. 2013) and
between genotype-specific methods (Browning and Browning 2007;
e.g., Marchini and Howie 2010), there has been little comparison be-
tween the two groups of algorithms to date.

Here we introduce LD-kNNi, an imputation algorithm based on the
k-nearest neighbors imputation (kNNi) method (Troyanskaya et al.
2001), which takes into account the linkage disequilibrium (LD) be-
tween SNPs when choosing the nearest neighbors. Critically, our algo-
rithm does not require ordered SNPs, unlike most existing genotype
specific methods such as Beagle and fastPHASE. We compare the
performance of our new method to several existing methods by using
genome-wide SNP data from apple, maize, and grape.

MATERIALS AND METHODS

LD-kNNi
kNNi is a commonly used imputation method that has been used pre-
viously for genotype imputation (Troyanskaya et al.2001) andhas recently
been extended to categorical data (Schwender 2012). In this work we only
consider biallelic SNPs and code the genotypes numerically as 0 (homo-
zygous major allele), 1 (heterozygous), and 2 (homozygous minor allele).

To impute a genotype at SNP pj in sample si the categorical kNNi
algorithm (henceforth simply kNNi) first calculates a distance from
the sample to every other sample. We use the taxicab distance, where
the distance, dn (s1, s2) between any two samples s1 and s2 is given
by the following equation:

dnðs1; s2Þ ¼ 1
n

X
p2P

jgðs1; pÞ2 gðs2; pÞj (1)

where P is the set of all SNPs and g (s, p) is the genotype of sample s at
position p. It is possible that either, or both, of g (s1, p) or g (s2, p) are
unknown, in which case this SNP is ignored in the summation. To
account for the fact that the distance between samples may therefore
sum across a different number of samples, we include a normalizing
term, 1/n, where n is the number of SNPs actually included in the
summation. Distance measures other than the taxicab distance could
be used, the most obvious alternative being the Euclidean distance.
Using the Euclidean distance rather than the taxicab distance did not
noticeably change performance (data not shown).

The algorithm proceeds by picking the k nearest neighbors to si that
have a known genotype at position p and then imputing the genotype, gi
(pj, si), as a weighted modal average of these genotypes (Schwender
2012). That is:

gi
�
si; pj

�
¼ arg max

a2f0;1;2g

X
s2N

1
dnðsi; sÞ I

�
g
�
s; pj

�
¼ a

�
(2)

where N is the set of k samples nearest si , which have a known
genotype at SNP pj: Iðgðs; pjÞ ¼ aÞ is an indicator function that takes
the value 1 if g (s, pj) = a and 0 otherwise.

Standard k-nearest neighbor relies on the assumption that the most
similar samples across the whole genome will be the best samples with
which to impute any genotype. However, we reasoned that the best
samples to use for imputation are those that share an evolutionary
history at the SNP to be imputed, and that these samples may not be
the most similar genome-wide. Genotype imputation methods like
Beagle and fastPHASE use a similar reasoning: they use information
from neighboring SNPs because these SNPs likely share a history with
the SNP to be imputed due to physical linkage. Beagle and fastPHASE
rely, however, on orderedmarkers and sufficiently dense genotype data
to enable haplotype reconstruction. In the absence of a known marker
order, we reasoned that the most informative samples for imputation
may be those that are most similar at SNPs that are highly correlated
with the SNP to be imputed. These highly correlated SNPs may be
physically linked to the SNP of interest, but they may also be correlated
without being physically linked. Regardless of the reason for the cor-
relation, we reasoned that these SNPs would be most informative for
choosing the nearest neighbors with which to perform imputation.

We therefore introduce LD k-nearest neighbor imputation (LD-
kNNi), where only the l SNPs most in LD with the SNP to be imputed
are used to determine the nearest neighbor and the weightings to be
used when imputing. The “LD” in our algorithm name, LD-kNNi, does
not necessarily refer to physical linkage but rather to the correlation
between any two SNPs in the data.

Thus, Equation 1 becomes:

dlðs1; s2Þ ¼ cþ 1
n

X
p2LðpiÞ

jgðs1; pÞ2 gðs2; pÞj (3)

where L(pi) is the set of l SNPs in strongest LD with the SNP to be
imputed. The algorithm then continues as for kNNi with one minor

n Table 1 Performance of the different imputation methods on
the apple dataset

Method Genotype Error Allele Error Run Time, sec

Mode 23.0% 12.4% a

kNNib 20.6% 10.8% 18
MF 9.9% 5.1% 40,107
fastPHASE 7.7% 3.9% 52,399
Beagle 7.6% 3.9% 424
LD-kNNic 7.4% 3.9% 104

kNNi, k-nearest neighbors imputation; LD-kNNi, linkage disequilibrium k-near-
est neighbors imputation.
a

Run time was under a second.
b

Using a fixed value of k = 8.
c

Using fixed values of k = 5 and l = 20.
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exception. As we are now using a smaller number of SNPs to calculate
distance, it is possible that there could be no genetic difference be-
tween a pair of samples. To avoid a distance of zero, which would
result in Equation 2 being undefined, we add a constant to the stan-
dard taxicab distance. We set this constant to one as adding different
values has little effect on imputation performance (Supporting In-
formation, Table S1 and File S1).

We implement LD-kNNi in our program LinkImpute (available
from http://www.cultivatingdiversity.org/software under the GPL ver-
sion 3 license). LinkImpute allows parameter values (k for kNNi, k and l
for LD-kNNi) to be either fixed or optimized. To optimize the param-
eter values, LinkImpute randomly samples 10,000 known genotypes.
For each set of parameter values, each one of these genotypes is masked
and then imputed to calculate accuracy. LinkImpute optimizes the
parameters by assuming the parameter space is unimodal, bounding
the search space and then searching the space for the optimal values.

Whencomparingdifferent imputationmethodson theappledataset,
we used manually optimized parameter values (k for kNNi, k and l for
LD-kNNi). For kNNi, k = 8 was chosen. For LD-kNNi, k = 5 and l = 20
(Figure S1). When comparing imputation programs on different data-
sets, we allowed LinkImpute to choose optimal parameters.

Data
We collected GBS data from a collection of 1995 accessions from the
genusMalus from the US Department of Agriculture apple germplasm
repository in Geneva, NY. The samples were processed with two dif-
ferent restriction enzymes (ApeKI, PstI/EcoT22I) in separate GBS li-
braries and were sequenced using Illumina Hi-Sequation 2000
technology. Genotypes were called using a custom GBS pipeline de-
scribed in Gardner et al. (2014). Briefly, 100-bp reads generated from
both enzymes were aligned to the Malus domestica reference genome
version 1.0 (Velasco et al. 2010) using the default parameters in BWA
(Li and Durbin 2009). Genotypes were called using GATK (McKenna
et al. 2010) with a minimum of eight reads supporting each genotype.
The final genotype matrix was filtered to contain only samples from the
domesticated apple,Malus domestica, and#20%missing data per SNP
and per sample. SNPs with a minor allele frequency (MAF) of ,0.01
were then discarded. Finally, the data were pruned to exclude clonal

relationships: if two or more samples had IBD.0.9, they were consid-
ered clones and the sample with the least amount of missing data from
the group was retained. This resulted in a dataset of 711 samples and
8404 SNPs.

To test the accuracy of our imputation method we created a
“masked” dataset by setting 10,000 random genotypes to missing. This
created “truth known” genotypes to which our imputed genotype calls
were compared. We limited our testing to 10,000 masked genotypes,
which represents 0.17% of the genotype matrix, in order to maintain a
dataset with a reasonable amount of missing data while providing
enough masked genotypes to be able to estimate imputation accuracy.

Biased allele frequency in imputed data has been shown to affect
downstream analyses (Han et al. 2014). To determine how well each
imputation method estimates allele frequencies, we filtered the geno-
type matrix to contain no missing data. This resulted in a matrix con-
taining 1001 SNPs from 459 samples (Figure S2). We masked and then
imputed 20% (91,952 genotypes) of the genotypes at random and
compared the allele frequency estimates from the imputed data to
the allele frequency estimates from the complete genotype matrix. As
most imputation methods make use of other SNPs to aid imputation,
we imputed using all 8404 SNPs in the dataset so as to provide more
information to these methods.We then restrict our analysis to the 1001
complete SNPs.

We also tested theperformanceofourmethodongenome-wideSNP
data frommaize and grape. The maize data were downloaded from the
International Maize and Wheat Improvement Center (Hearne et al.
2014). We reduced the data to biallelic SNPs with ,20% missing data
and aMAF.1% and then discarded samples with.20%missing data.
This resulted in 43,696 SNPs from 4300 samples.

Togenerate the grapedatasetwecollectedGBSdata fromacollection
of diverse samples from the genus Vitis including commercial Vitis
vinifera varieties, hybrids and wild accessions from the USDA grape
germplasm collection. The samples were processed with two different
restriction enzymes (HindIII/BfaI, HindIII/MseI) and were sequenced
using Illumina Hi-Sequation 2000 technology. We then used the 12X
grape reference genome (Jaillon et al. 2007; Adam-Blondon et al. 2011)
and the Tassel / BWA version 4 pipeline to generate a genotype matrix
(Li and Durbin 2009; Glaubitz et al. 2014). Default parameters were

Figure 1 The number of shared neighbors between the k-nearest
neighbors imputation (kNNi) and linkage disequilibrium k-nearest
neighbors imputation (LD-kNNi) methods. The value of l was set to 5
for both methods.

Figure 2 The probability of a single-nucleotide polymorphism (SNP)
being on the same chromosome as the imputed SNP as a function of
linkage disequilibrium (LD) with the imputed SNP. SNPs are ranked
according to LD, with the SNP most in LD with the imputed SNP
ranked one.
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used at each stage except for the SNP output stage where we filtered for
biallelic SNPs. We then removed any genotypes with fewer than eight
supporting reads using vcftools (Danecek et al. 2011). Using PLINK
(Purcell et al. 2007), we removed SNPs with.20%missing data before
removing samples with .20% missing data. We then removed SNPs
with excess heterozygosity (failed a Hardy2Weinberg equilibrium test
with a p-value , 0.001) and finally SNPs with a MAF , 0.01. This
created a dataset of 8506 SNPs and 77 samples.

Other imputation methods
We compared LD-kNNi, as implemented in LinkImpute, with several
other imputationmethods and programs that do not require a reference
panel:

Generic imputation methods:

1. Mode: The modal value of all other samples’ genotypes at the SNP
of interest. Implemented in LinkImpute.

2. k Nearest Neighbor: As described above and implemented in
LinkImpute.

3. MF: As implemented in the R package MissForest (version 4.6-10)
with maxiter set to 10 and ntree to 100 and all other parameters set
to default values. MF could not be run on the entire genome at
once because the run time was prohibitive. Instead it was run one
chromosome at a time (Stekhoven and Bühlmann 2012).

Genotype-specific methods:

4. Beagle: Version r1230 using default settings (Browning and
Browning 2007).

5. fastPHASE: Version 1.4.0 using default settings except K (the
number of clusters) is set to 200 (Scheet and Stephens 2006).

Data availability
The datasets used in this study are available in Supporting Information
File S1. LinkImpute is available from http://www.cultivatingdiversity.
org/software under the GPL version 3 license.

RESULTS

Imputation accuracy
We first compared the accuracy of imputation by using the large apple
datasetwherewe randomlymasked10,000genotypes.Wecompared the
imputed genotypes with the actual genotypes and calculated two
measures of accuracy. Genotype error is the proportion of genotypes
called incorrectly and allele error is the proportion of alleles called
incorrectly. The methods rank similarly for both measures (Table 1),
although allele error is approximately half of genotype error. This is to
be expected, because all methods that are likely to impute one allele
correctly are unlikely to impute both alleles incorrectly.

Our results show that LD-kNNi performs slightly better than Beagle
and fastPHASE, which have the greatest accuracy of all the other

Figure 3 Imputation accuracy as a function of the minor allele frequency (MAF) of the imputed SNP for each of the six imputation methods. MAF
is binned in 5% bins and the number of SNPs in each bin is shown in parentheses. kNNi, k-nearest neighbors imputation; LD-kNNi, linkage
disequilibrium k-nearest neighbors imputation.
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methods tested (Table 1). MF performs noticeably worse than these
methods, although this may, in part, be due to having imputed on a per
chromosome basis. kNNi performs significantly worse than any of
these methods, only slightly out-performing Mode imputation. We
investigated the difference between LD-kNNi and kNNi further by
computing, for each imputed genotype, the number of neighbors that
are shared between the kNNi and LD-kNNi methods, using k = 5 in
both cases. We found that in 56% of imputations the two methods
share no neighbors (Figure 1). This finding suggests that in many cases
kNNi is imputed using samples that, although similar across the whole
genome, may not be informative for the SNP we are imputing. Figure
S3 further supports this hypothesis by measuring the average distance,
using the LD-kNNi methodology (dl, Equation 3), from the sample to
be imputed to the neighbors being used in the imputation. This shows
that the average distance, again using k = 5 in both cases, is much
greater in the case of kNNi (average distance: 6.4) than LD-kNNi
(average distance: 1.8).

Unsurprisingly, we found that the performance of LD-kNNi is
dependent on the level of LD between the SNP to be imputed and
the SNPs used to find the nearest neighbors. Where the average LD
between the SNPs used and the imputed SNP is high, the imputation
error is lower (Figure S4). Although the apple reference genome is not
used in LD-kNNi, we exploited it to investigate how often our nearest
neighbor calculations used SNPs from chromosomes other than the

chromosome on which the imputed SNP is located. To do this, we
calculated the probability of being on the same chromosome as the
imputed SNP for the 20 SNPs in greatest LD with the imputed SNP.
Figure 2 shows that for the SNP with the highest LD, there is a prob-
ability of 0.7 of being on the same chromosome and that this drops off
to 0.31 for the 20th-ranked SNP.

We investigated the performance of the different imputation meth-
ods based on the MAF of the imputed SNPs. Figure 3 shows the geno-
type error rate of the different methods stratified by MAF. While the
error rate noticeably increased with MAF for Mode and kNNi, the
increase is small for the other four methods.

Run time
Comparing the run time of the various imputation methods (Table 1),
we note that both MF and fastPHASE took significantly longer than
any of the other methods: these two methods take on the order of 10 hr
compared with only a few minutes or less for the other methods.
Further analysis of the run time suggests that, as both the number of
samples and SNPs increases, LD-kNNi will continue to have a shorter
run time than Beagle (Figure S7 and Figure S8).

Comparing the performance of LinkImpute and Beagle on mul-
tiple datasets (Table 2) we note that LinkImpute has a similar run-
time to Beagle on all three datasets while achieving slightly better
accuracy.

n Table 2 Performance of LinkImpute and Beagle on different datasets

Dataset Number of SNPs Number of Samples
Genotype Error Run Time, sec

LinkImputea Beagle LinkImputea Beagle

Apple 8404 711 7.4% 7.6% 104 424
Maize 43,696 4300 18.1% 18.7% 7608 16,585
Grape 8506 77 9.5% 11.0% 28 16

SNP, single-nucleotide polymorphism.
a

Using the LD-kNNi option and optimized values of k and l

Figure 4 Bubble plots of the
actual and imputed genotypes
for each of the 10,000 masked
genotypes using each of the six
imputation methods. Bubbles are
not shown for the correctly im-
puted cases. The size of the
bubbles is proportional to the
frequency of observations in
that category. kNNi, k-nearest
neighbors imputation; LD-kNNi,
linkage disequilibrium k-nearest
neighbors imputation.
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Accuracy of allele frequency estimation
Figure 4 shows a bubble plot of actual and incorrectly imputed geno-
types for each of the six imputation methods. This shows that all six
methods have a bias toward imputing the major allele. This allele bias is
pronounced for Mode and kNNi and is less severe for the other
methods.

The allele bias observed in Figure 4 is expected to affect allele fre-
quency estimation. We investigated this further by using our smaller
dataset. For each of the six methods, we calculated the MAF across the
1001 SNPs without missing genotype data using both the observed
genotypes and the imputed genotypes. Figure 5 shows that every im-
putation method biases the MAF downward. This finding is consistent

Figure 5 Minor allele frequency (MAF)
computed by the use of actual and imputed
genotypes for each of the six imputation
methods. kNNi, k-nearest neighbors
imputation; LD-kNNi, linkage disequilibrium
k-nearest neighbors imputation.
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with our observation of allele bias in Figure 4. The resulting bias is least
pronounced for genotype specific methods, which all bias the MAF
downward by 0.5% as opposed to a minimum of 0.6% for any of the
other methods.

Figure 5 shows the tendency for the MAF to be underestimated
when calculated using an imputed dataset no matter what imputation
method is used. In addition, LD-kNNi outperforms every othermethod
in estimating MAF: the points cluster much closer to the line for LD-
kNNi than for any of the other methods. Moreover, LD-kNNi’s most
extreme deviation (3.8%) from the observed MAF is lower than any of
the other tested methods (Figure S5). The two groups in the Mode plot
are caused by the two different modal values for SNPs (0 or 1). The
bottom left group is where the modal value is 0, the top right group is
where it is 1 (Figure S6).

DISCUSSION
LD-kNNi performs well compared with the most commonly used
imputation methods. On our apple dataset it results in both superior
imputation accuracy (Table 1) and more accurate allele frequency es-
timates (Figure 4 and Figure 5). Accuracy results on the two other
tested datasets are similar, and the results presented here suggest that
performance should be comparable on other similar datasets. In par-
ticular, Figure 3 suggests that the MAF distribution should have little
effect on the relative performance of LD-kNNi.

The run time of LinkImpute also compares favorably with existing
methods. Only two of the methods studied here have both high
accuracy and reasonable run times, namely Beagle and the LD-kNNi
option of LinkImpute. Of these, our method is slightly faster. In
addition, as the number of samples and SNPs increases, LD-kNNi is
expected to outperform the other methods (Figure S7 and Figure S8),
which is particularly noteworthy because increasing sample size is
critical to augmenting the statistical power of GWA studies (Spencer
et al. 2009).

A recently developed imputation algorithm was designed for het-
erozygous species without a reference genome and was applied to
raspberry (genus Rubus; Ward et al. 2013). However, this method
applies only to biparental populations and relies on the construction
of a genetic map. The primary advantage of LD-kNNi over existing
methods is that it does not rely on ordered markers and can be applied
to diverse and heterozygous populations (Figure S9), not just biparental
crosses. Although we called SNPs using the apple reference genome,
LD-kNNi makes no use of this information during imputation. Indeed
Figure 2 shows that in many cases our algorithm is using information
from SNPs that are not on the same chromosome as the imputed SNP.
It is worth noting that linkage group assignments from apple F1 pop-
ulations conflict with reference genome locations for 14–18% of SNPs
(Antanaviciute et al. 2012; Gardner et al. 2014). It is therefore likely that
a significant number of sequences are anchored incorrectly in the ver-
sion of the apple genome used here. Thus, the values in Figure 2 may be
upward biased. Nevertheless, LD-kNNi clearly often makes use of in-
formation from SNPs on other chromosomes and the quality of the
apple reference genome has no effect on its performance.

Wedemonstrated that the performance of LD-kNNi improves as the
LD between the imputed SNPs and the SNPs used to find the nearest
neighbors increases (Figure S4). This suggests that, as the SNP density
of a dataset increases and more SNPs are in LD with one another, one
can expect improvements in the imputation accuracy of LD-kNNi. One
way of obtaining more SNPs would be to allow greater levels of missing
genotypes, although the increase in missing data are likely to have a
negative effect on imputation accuracy. Whether this negative effect is

offset by the positive effect of increased SNP density is an area that
warrants further study.

Like most other imputation methods, LinkImpute is applied to a
table of genotypes that have been called by a genotype calling algorithm.
Inmany cases, a genotype without sufficient sequence coverage is set to
missing in the table even though it has several supporting sequence reads
from the original data source. In such cases, the information from those
reads is lost and remains unused during imputation. By including the
information from these reads during imputation, we are likely to
improve imputation performance. In turn, this should enable greater
confidence genotype calls from lower read depths thereby significantly
increasing the total number of genotypes called. Moreover, incorporat-
ing imputation and SNP calling in this manner should help improve
genotyping error rates, especially in cases of low read depth. This is an
active areaof researchand future improvements are expected to increase
both genotype quality and quantity.

Our results suggest that LD-kNNi produces more accurate allele
frequency estimates at the cost of a slight decrease in imputation
accuracy. Biased allele frequencies are known to adversely affect
downstream analyses (Han et al. 2014), whereas increased imputa-
tion accuracy does not always lead to improved phenotype predic-
tion (Rutkoski et al. 2013). For many studies, an imputation method
with less bias in allele frequency estimation, such as LD-kNNi, may
therefore be preferable to a method with slightly increased accuracy.
It is worth noting that, in cases where one is only interested in
the MAF, one can simply estimate it from the nonmissing geno-
types. We show that such an estimate is indeed unbiased and that it
is more accurate than estimating MAF after imputation (Figure S5
and Figure S10). The relationship between imputation accuracy,
allele frequency bias and their effects on downstream analyses war-
rants further investigation.

Genotype imputation is a crucial step inmany genomic studies as all
existing genotyping methods result in some missing data. Most impu-
tation algorithms rely on physical or genetic maps, either directly or in
the generation of ordered SNPs, and are not suitable for use in non-
model organisms with poor or underdeveloped genomic resources. Our
novel genotype imputationmethod, LD-kNNi, does not rely on physical
or geneticmaps and imputes genotypes as accurately as the best existing
methods that require ordered markers. In addition, it is fast and
outperforms other methods in its ability to accurately estimate allele
frequencies. Thus, LinkImpute is a valuable tool for improving genome-
wide analyses in nonmodel organisms, especially for GWA and GS in
highly diverse and heterozygous organisms.
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