
INVESTIGATION

Post-transcriptional Mechanisms Contribute Little
to Phenotypic Variation in Snake Venoms
Darin R. Rokyta,*,1 Mark J. Margres,* and Kate Calvin†

*Department of Biological Science and †College of Medicine, Florida State University, Tallahassee, Florida 32306

ABSTRACT Protein expression is a major link in the genotype–phenotype relationship, and processes
affecting protein abundances, such as rates of transcription and translation, could contribute to phenotypic
evolution if they generate heritable variation. Recent work has suggested that mRNA abundances do not
accurately predict final protein abundances, which would imply that post-transcriptional regulatory pro-
cesses contribute significantly to phenotypes. Post-transcriptional processes also appear to buffer changes
in transcriptional patterns as species diverge, suggesting that the transcriptional changes have little or no
effect on the phenotypes undergoing study. We tested for concordance between mRNA and protein
expression levels in snake venoms by means of mRNA-seq and quantitative mass spectrometry for 11
snakes representing 10 species, six genera, and three families. In contrast to most previous work, we found
high correlations between venom gland transcriptomes and venom proteomes for 10 of our 11 compar-
isons. We tested for protein-level buffering of transcriptional changes during species divergence by com-
paring the difference between transcript abundance and protein abundance for three pairs of species and
one intraspecific pair. We found no evidence for buffering during divergence of our three species pairs but
did find evidence for protein-level buffering for our single intraspecific comparison, suggesting that buff-
ering, if present, was a transient phenomenon in venom divergence. Our results demonstrated that post-
transcriptional mechanisms did not contribute significantly to phenotypic evolution in venoms and suggest
a more prominent and direct role for cis-regulatory evolution in phenotypic variation, particularly for snake
venoms.
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The relationship between genotype and phenotype is complex, and how
this relationship shapes evolutionary patterns depends on how or
whether variation can be produced at each step in the phenotypic
expression of the genotype. The production of proteins is a primary
stepalong thegenotype-to-phenotypepathway, andequilibriumprotein
levels are determined by rates of transcription, mRNA degradation,
translation, and protein degradation (Li et al. 2014; Li and Biggin 2015).
Some recent work has suggested that mRNA abundances do not accu-
rately predict final protein levels (Foss et al. 2007; Diz et al. 2012;
Khan et al. 2013; Casewell et al. 2014), which would imply that

post-transcriptional regulatory processes, such as those affecting trans-
lational rates, contribute significantly to phenotypes. Furthermore,
these post-transcriptional processes appear to buffer changes in tran-
scriptional patterns as species diverge. Schrimpf et al. (2009) found
higher correlation for protein levels between Caenorhabditis elegans
and Drosophila melanogaster than for transcript levels or even tran-
script vs. protein levels within species. Similar results have been found
in the divergence of nematode species (Stadler and Fire 2013) and
across bacteria, yeast, flies, humans, and rice (Laurent et al. 2010).
These results suggest that changes in transcriptional patterns often
detected in transcriptome-based studies have little or no effect on the
phenotypes undergoing study.

Previously detecteddiscrepancies betweenmRNAandprotein levels
might reflectmethodological or statistical issues (Li and Biggin 2015). A
recent study in mammals, which accounted for methodological and
technical issues of previous studies, found a much higher correlation
between transcript and protein levels (Li et al. 2014); transcript levels
explained at least 56% of the differences in protein abundance. In
contrast to studies showing protein-level buffering, changes in mRNA
levels were recently shown to play a dominant role in changes in
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protein levels during the response of mammalian cells to pathogens
(Jovanovic et al. 2015). In addition to technical issues, the degree of
correlation between transcript and protein abundances was found to be
related to protein function in mice (Ghazalpour et al. 2011). Disagree-
ments between studies therefore might also reflect differences in the
systems or particular tissues being studied.

Snake venoms are a unique system for the study of the relationship
between genotypes and phenotypes. Because they are secretions, the
genotype–phenotype relationships for venoms are relatively simple,
with no complicating developmental processes interposed between
the expressed genes and their final products. Because of their evolu-
tionarily critical roles in feeding and defense (Jansa and Voss 2011) and
antagonistic coevolutionary interactions with predators and prey
(Biardi et al. 2005, 2011), they appear to evolve rapidly [although
exceptions are known (Margres et al. 2015a)] under diversifying selec-
tion, and regulatory changes appear to play a major role in their
evolution (Margres et al. 2015a; Rokyta et al. 2015). Venoms are par-
ticularly significant in the context of the transcriptome–proteome
relationship. Most previous studies of this relationship examined con-
served housekeeping genes, which are expected to have protein levels un-
der stabilizing selection. Protein-level buffering and post-transcriptional
regulation could actually be detrimental for traits under directional
selection. The first study to compare locus-specific venom gland
transcriptome abundances to venom proteome abundances showed
an approximate correspondence for two species, Ovophis okinavensis
and Protobothrops flavoviridis, of the familyViperidae (Aird et al. 2013).
For both species, significant positive correlations were detected, and
approximately half of the variance was explained. More recently, Case-
well et al. (2014) claimed to provide evidence from six viperid species
for significant contributions of post-transcriptional regulation to
venom composition after having failed to find a high correlation be-
tween transcript and protein abundances. This study, however, suffered
from a number of flaws that render its conclusions questionable. Fore-
most among these flaws was the use of Sanger sequencing of cDNA
libraries to estimate transcript levels, a method that is generally not
quantitative (Wang et al. 2009). Their proteomic methods (Calvete
et al. 2007b) were also low-resolution, relying on a convolution of
HPLC absorbance values and gel densitometry to estimate protein
abundances. In fact, Casewell et al. (2014) showed reasonable corre-
spondence between transcript and protein levels when they reduced the
resolution to toxin gene families rather than attempting to estimate
abundances for individual paralogs. Disagreement between transcrip-
tomes and proteomes could reflect a significant biological phenome-
non, but, particularly in cases of disagreement, technical limitations
must first be rejected as the source of the pattern.

To determine whether venom gland transcript levels and venom
protein abundances were positively correlated and thereby ascertain the
role of post-transcriptional regulation in venom evolution, we analyzed
venom gland transcriptomes and venom proteomes from 11 snakes
from10species, representing three families andsix genera.These species
included six species from the family Viperidae (Crotalus adamanteus,
Crotalus horridus, Agkistrodon contortrix, Agkistrodon piscivorus, Sis-
trurus catenatus, and Sistrurus miliarius), two species from the family
Elapidae (Micrurus fulvius and Micrurus tener), and two species from
the family Colubridae (Boiga irregularis and Hypsiglena sp.). We in-
cluded two individuals of C. horridus representing a known case of
rapid intraspecific venom evolution (Glenn et al. 1994; Rokyta et al.
2015).We tested for protein-level buffering by comparing divergence in
transcript vs. protein abundances for orthologous toxins across four
pairs of snakes to determine the importance of post-transcriptional
mechanisms during species divergence.

MATERIALS AND METHODS

Transcriptome sequencing and assembly
The transcriptomes for B. irregularis (McGivern et al. 2014),Hypsiglena
sp. (McGivern et al. 2014), C. adamanteus (Rokyta et al. 2011; Margres
et al. 2015a), and M. fulvius (Margres et al. 2013) and the two for
C. horridus (Rokyta et al. 2013, 2015) were described previously.
Sequencing for B. irregularis and Hypsiglena sp. was performed on
an Illumina MiSeq with 150-nucleotide paired-end reads. All other
sequencing was performed on an Illumina HiSeq with 100-nucleotide
paired-end reads. Assembly proceeded exactly as described by Rokyta
et al. (2015). Our specimen of Hypsiglena was from an undescribed
species (McGivern et al. 2014), hence its designation as Hypsiglena sp.
Mean insert sizes of all libraries were 130–150 nucleotides. Summaries
of the sequencing data are provided in Table 1.

Estimating transcript abundances
To estimate transcript abundances for each transcriptome, we first
generated sets of merged reads for each data set using PEAR (Table
1) (Zhang et al. 2014). Read merging helps eliminate low-quality bases,
facilitates the removal of any adapter read-through because of short
insert sizes, and generates longer composite reads that are more likely
to have a unique mapping. All estimates were made using only these
high-quality merged reads. All unique venom transcripts for each tran-
scriptome were clustered into sets showing less than 1% sequence di-
vergence, and only one representative from each cluster was used in our
analyses. Members of clusters represent alleles, recently derived paral-
ogs, or contigs incorporating sequencing errors with differences below
the resolution afforded by our sequencing read lengths. We estimated
transcript abundances by mapping reads to only the coding sequences
of toxin-encoding transcripts. We used three different methods for
estimating transcript abundances. We used SeqMan NGen version
12.2 with 10 million merged reads and a 95% minimum match per-
centage, bowtie2 (Langmead and Salzberg 2012) version 2.2.5 using
10 million merged reads, and RSEM (Li and Dewey 2011) with bowtie
(Langmead et al. 2009) as the aligner and using all merged reads. For
bowtie2, we performed both local and end-to-end alignments and
found nearly perfect correlations between these values for all data sets
(0.99 , r , 1.0 and 0.99 , R , 1.0, where r is Spearman’s rank
correlation coefficient and R is Pearson’s correlation coefficient). We
therefore only presented the results from local alignments. For NGen
and bowtie2, we used read counts as our estimates of transcript abun-
dances. We used the estimate of transcripts per million (TPM) from
RSEM. To ensure that only transcripts with accurate estimates of abun-
dance were included in our analyses, we eliminated those with coeffi-
cients of variation greater than 1 in their coverage across sites on the
basis of the bowtie2 local alignments.We also compared the percentage
of mapped reads for each transcript from the bowtie2 local alignments
and the estimated percentages of read counts per transcript with RSEM.
Transcripts with 10-fold or higher differences between methods were
excluded.

Mass spectrometry
Mass spectrometry analysis of venomwas conductedby theFloridaState
University College of Medicine Translational Science Laboratory. To
analyze whole venom samples, we performed nanospray LC/MSE using
the Synapt G2 HD Mass Spectrometer with a nanoAcquity UPLC
(Waters Corp.) MSE is a data-independent acquisition mode that alter-
nates between low and high energy functions, collecting mass spectral
data for all detectable precursor and product ions. For coeluting pep-
tides, the high energy spectra are chimeric, containing a mixture of
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unfragmented precursor ions and CID fragment ions from multiple
precursors. Digestion of whole venom samples was performed
using the Calbiochem ProteoExtract All-in-One Trypsin Digestion
Kit (Merck, Darmstadt, Germany) according to the manufacturer’s
instructions using LC/MS grade solvents. Whole venom digests were
diluted 1:10 in 3% acetonitrile (ACN) in LC/MS grade water (J. T.
Baker) with 0.1% formic acid (FA) and 25 fmol/ml yeast alcohol de-
hydrogenase (ADH, Waters Corp.) as an internal standard. Two mL of
sample containing 400 ng venom and 50 fmol of the internal standard
(ADH) was injected. Glufibrinopeptide (785.8426 m/z; Waters Corp.)
was used as the lock mass (external calibrant). Tryptic peptides were
separated by reverse-phase chromatography using aWaters nanoAcquity
UPLC BEH130 C18 column with dimensions of 100 um · 100 mm
and 1.7 mm bead size. Gradient conditions were as follows: mobile
phase A solvent was 0.1% formic acid (Aq); mobile phase B solvent
was 0.1% formic acid in acetonitrile (ACN); column was maintained at
a temperature of 35� and a flow rate of 880 nL/min. The column was
pre-equilibrated at initial conditions of 7% B and the gradient pro-
ceeded 7–35% B over 55 min, 35–50% B over 5 min, 50–80% B over
2 min, and remained at 80% B for 5 min before returning to 7% B over
3 min. Data were acquired for 70 min in nanoESI Positive mode over a
mass range of 50–2000 m/z. The ion source temperature was 80�,
capillary and cone voltages were 2.8 kV and 30 V, respectively, and
nanoflow gas was 0.5 bar. Fragmentation occurred in the trap collision
cell with low energy collision set at 4 V and high energy collision set
over a ramp of 15–40 V. Raw data were generated using MassLynx
version 4.1 software (Waters Corp.) and data were processed in
ProteinLynx Global SERVER (PLGS) version 2.5.1 (Waters Corp.).
The IdentityE function in PLGS was used to deconvolute the spectra
by assigning fragment ions to specific precursors based on retention
time and other factors. Proteins were identified using the PLGS IdentityE
algorithm to search a decoy database containing entries specific to the
proteome animal with the internal standard sequence (ADH) appended
and an equal number of reversed sequences. The database included
all putative toxin proteins as well as the nontoxin proteins identified in
the venom-gland transcriptome. Search parameters allowed for precur-
sor and fragment mass tolerances to be set by the software based on
resolution, one missed cleavage site, three peptides per protein, seven
fragment ions per protein, and post-translational modifications of
cysteine carbamidomethylation (fixed) and oxidation of methionine
(variable). Each sample was run in triplicate.

Estimating protein abundances
All proteins retained in the final analyses had 0% false-positive rates
(FPR), and any protein not detected in all three replicates was excluded

from our quantitative comparisons. Yeast alcohol dehydrogenase
(ADH)was used as an internal standard for calculating response factors
in the estimation of protein quantities, and response factors were
calculated independently for each replicate. For the first analysis, only
the top three peptides, ranked by PLGS score (PLGS version 2.5.1), were
used for proteinquantification.Only proteinswithat least threedetected
peptides were retained. The known load of ADH (50 fmol) was divided
by the summed intensities of its top three peptides to obtain a response
factor with units of fmol per unit intensity. The response factor was
multipliedby the sumof the top three peptide intensities for eachvenom
protein toestimate its concentration.For thesecondanalysis,weusedthe
summed intensities of all peptides in our calculations. For the response
factor, the known concentration of ADH (50 fmol)wasmultiplied by its
molecular weight to obtain the total fg load. This fg valuewas divided by
the summed intensities of all ADH peptides to obtain a response factor
with units of fg per unit intensity. The response factor wasmultiplied by
the summed intensities of all peptides in each venomprotein to estimate
its total fg load, which was then divided by the theoretical molecular
weight of the venom protein to estimate its fmol concentration. This
all-peptide quantification method is based on the same principles
underlying iBAQ, which has been demonstrated to have biological
relevance and to perform well at the protein and proteome levels
(Schwanhäusser et al. 2011; Arike et al. 2012). For both analyses, fmol
values from each replicate were calculated separately and averaged to
produce a final estimate of concentration. To assess the quality of our
estimates, we calculated the coefficients of variation for the values of
each protein across replicates. From all 11 data sets, only a single pro-
tein had a coefficient of variation greater than 1 under either anal-
ysis: C. adamanteus SVSP-1 = 1.05 under the all-peptide analysis.
Across all 11 data sets, the coefficients of variation were below 0.3
for 93% of proteins under the all-peptide analysis and 96% of pro-
teins under the top-three analysis. We therefore did not exclude any
proteins on the basis of low quality. We did, however, exclude all
Bradykinin-potentiation and C-type natriuretic peptides because
they are known to undergo extensive proteolytic cleavage, which
could cause a significant discrepancy between the predicted and
actual peptides.

Selecting abundance measures
Tocompare transcript toprotein levels,weneededcomparablemeasures
of both. For transcript abundances, we began with counts of reads
mapped to coding sequences from alignments using NGen version 12
fromtheDNASTARsoftware suite (DNASTAR, Inc.,Madison,WI)and
bowtie2 (Langmead and Salzberg 2012) and transcripts per million
(TPM) estimated using a bowtie (Langmead et al. 2009) alignment

n Table 1 Summary of transcriptome sequencing and assembly

Species
Read
Length No. of Pairs

Read
Qual. Merged Reads

Merged
Length

Merged
Qual.

No. of
Toxins TSA Accession SRA Accession

Crotalus adamanteus 101 95,643,958 32 60,687,972 143 38 44 GDBB01000000 SRR441163
Crotalus horridus A 100 104,457,593 32 61,150,973 135 38 42 GDBC01000000 SRR575168
Crotalus horridus B 100 62,494,397 36 42,425,941 133 38 49 GDBD01000000 SRR1554232
Micrurus fulvius 101 79,573,048 31 52,624,077 137 38 43 GDBF01000000 SRR630454
Micrurus tener 100 57,428,210 35 40,482,723 135 38 59 GDBH01000000 SRR2028245
Boiga irregularis 151 17,103,141 35 16,340,720 143 39 46 GDBA01000000 SRR1292619
Hypsiglena sp. 151 16,103,579 36 15,858,156 142 39 33 GDBE01000000 SRR1292610
Sistrurus catenatus 100 102,409,559 32 60,426,084 137 38 71 GDBI01000000 SRR2029826
Sistrurus miliarius 100 114,684,764 33 72,767,908 140 38 63 GDBJ01000000 SRR2031930
Agkistrodon contortrix 100 103,979,548 25 31,169,225 136 38 69 GDAY01000000 SRR2032114
Agkistrodon piscivorus 101 69,571,375 32 40,523,629 144 38 76 GDAZ01000000 SRR2032118
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and RSEM (Li and Dewey 2011). All of these measures were highly
correlated across all 11 data sets (NGen vs. bowtie2: 0.99, r, 1.0 and
0.99, R, 1.0, NGen vs. TPM: 0.87, r, 0.98 and 0.74, R, 0.98,
and bowtie2 vs. TPM: 0.87, r, 0.98 and 0.74, R, 0.98, where r is
Spearman’s rank correlation coefficient and R is Pearson’s correlation
coefficient). For protein abundances, we estimated molar amounts us-
ing two approaches. For the first, we only considered the best three
peptide matches for each protein. For the second, we used all identified
peptides. These measures of protein abundance were also highly cor-
related across all 11 data sets (0.84, r , 0.97; 0.68, R, 0.99). For
our comparisons, we therefore used TPM estimates for transcript abun-
dances, because these are most directly analogous to molar amounts,
and the all-peptide protein abundances, because thismeasure should be
less sensitive to shared peptides among paralogs in the large gene
families characteristic of snake venoms.

Testing for post-transcriptional silencing
To test for thepresenceof venom-encoding transcripts expressedat high
levels but not detectable proteomically, we first excluded from consid-
eration transcripts with anomalous coverage distributions or high
discrepancies between transcript estimates as well as all Bradykinin-
potentiation and C-type natriuretic peptides for the reasons described
above.A transcriptwasconsideredproteomicallydetected if itwas found
in at least one of the three mass spectrometry replicates with a 0% FPR.

Statistical analyses
All statistical analyses were conducted in R (RDevelopment Core Team
2006). For all of our transcript-level and protein-level comparisons, we
used a centered log-ratio (clr) transform on the raw abundance esti-
mates after normalizing them to sum to 1 (Aitchison 1986). If the
normalized data are x ¼ ðx1; . . . ; xnÞ such that

Pn
i¼1xi ¼ 1, then

clrðxÞ ¼
�
ln

x1
gðxÞ; . . . ; ln

xn
gðxÞ

�
(1)

where gðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1⋯xnn

p
is the geometric mean. This transformation

takes the data from the simplex to real space. Because this transform
preserves rank, Spearman’s rank correlation coefficients were unaf-
fected. Because gðxÞ is the same for each component in each data set
and logðx=yÞ ¼ log x2 log y, the clr transform merely shifts all of the
points in a data set by a constant amount relative to the standard log
transform. For linear relationships, the clr transformation is therefore
equivalent to a log transform.

The choice of the clr transformation wasmade on the basis of theory
(Aitchison 1986) related to the treatment of data that are sum-
constrained. Although not widely recognized (but see Vêncio et al.
2007; Rokyta et al. 2015), RNA-seq data suffer from this constraint,
because the number of reads generated is independent of what is being
sequenced. Proteomic data suffer from the same issue (Margres et al.

Figure 1 Protein and mRNA abundances were highly correlated between venom proteomes and venom gland transcriptomes. We compared
RSEM estimates of transcripts per million (TPM) from venom gland transcriptomes to molar estimates of protein abundances in venoms for 11
individual snakes from 10 species and three families. All data were centered log-ratio (clr) transformed. Spearman’s rank correlations were high
(r . 0.6) for 10 of 11 comparisons. Transcript abundances explained the majority of variation in protein abundance (i.e., R2 . 0.5) for seven of the
11 comparisons.
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2015a). This can be understood most clearly by noting that for neither
approach do we have a meaningful way of measuring biologically rel-
evant absolute quantities. The use of log-ratio transforms reflects an
acknowledgment that we can only meaningfully compare relative
quantities of our components (i.e., transcripts or proteins).

Data availability
All raw transcriptomic reads were deposited in the National Center for
Biotechnology Information (NCBI) Short Read Archive (SRA), and the
assembled toxin transcripts were deposited in the NCBI Transcriptome
ShotgunAssembly (TSA)databases. Accessionnumbers are provided in
Table 1. The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium (Vizcaíno et al. 2014) via the
PRIDE partner repository with the dataset identifier PXD002837.

RESULTS AND DISCUSSION

Minimal contribution of post-transcriptional regulation
to protein abundances
Transcript and protein abundances were highly correlated across three
snake families. Although the strength of correlation varied among
comparisons (0.47, r, 0.89, where r is Spearman’s rank correlation
coefficient), 10 of the 11 comparisons showed r. 0:6, indicating that
the prevailing pattern was a strong agreement between transcript and
protein abundances for venoms and venom glands (Figure 1). Five
comparisons (B. irregularis, C. horridus type A, C. horridus type B,
M. fulvius, and M. tener) showed r . 0.8, clearly indicating that the

transcriptome can accurately predict the proteome. We also found
a strong linear relationship between transcript and protein levels (Fig-
ure 1). Pearson’s correlation coefficients (R) ranged from 0.58 to 0.92,
with five of 11 comparisons giving R . 0.8. Transcript abundances
explained themajority of variation in protein abundance (i.e., R2. 0.5)
in seven of the 11 comparisons. This high level of agreement held across
three families and varying levels of venom complexity (Figure 1).

Our results clearly demonstrated a strong agreement between tran-
script andprotein levels for venomglands andvenom.We identified cases
of higher levels of transcriptome/proteome concordance than ever pre-
viously reported (e.g., r = 0.89,R= 0.92, andR2 = 0.85 forC. horridus type
A) and showed similar patterns of agreement across three snake families.
This agreement is remarkable given that we were comparing equilibrium
protein levels to nonequilibrium transcriptional levels; our transcrip-
tomes characterized one time point during the whole process of venom
production, suggesting little temporal heterogeneity in transcriptional
levels among venom transcripts during venom production. Although
some variance in protein levels remains to be explained, the invocation
of “post-genomic mechanisms” as major contributors to venom compo-
sition variation (Casewell et al. 2014) appears to have been premature.
The transcriptome can be a strong predictor of the proteome.

No protein-level buffering during species divergence
Selection acts on protein rather than transcript levels (Diz et al. 2012)
and, under most conditions, protein levels are under stabilizing selec-
tion and stronger constraints than transcript levels (Khan et al. 2013).
Previous work (Schrimpf et al. 2009; Laurent et al. 2010; Stadler and Fire

Figure 2 Protein-level expression
buffering was not observed in
three interspecific comparisons of
pairwise divergence in venom
composition but was observed for
intraspecific divergence. Ortholo-
gous proteins were identified by
means of reciprocal blastp searches.
Transcript values are shown in black,
and protein values are shown in gray.
Values for corresponding transcript/
protein pairs are connected by line
segments. In the three interspecific
comparisons, protein divergence be-
tween pairs was statistically indistin-
guishable from transcript divergence,
indicating that divergence could be
accounted for by changes in transcript
levels alone. In the intraspecific com-
parison for Crotalus horridus, protein-
level divergence was less than
transcript-level divergence, indicat-
ing the presence of buffering.
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2013) has shown that divergence in transcript abundances between spe-
cies is buffered at the protein level; the efficacy of stabilizing selection is
thereby enhanced through post-transcriptional regulatory processes. Be-
cause of venom’s central role in the evolution and ecology of venomous
snakes (Fry and Wüster 2004), venom composition evolves quickly un-
der diversifying selection as species (Calvete et al. 2007a, 2010) or pop-
ulations (Alape-Girón et al. 2008; Gibbs et al. 2009; Núñez et al. 2009;
Boldrini-França et al. 2010; Calvete et al. 2011; Margres et al. 2015a;
Rokyta et al. 2015) diverge. Under diversifying selection, protein-level
buffering could hinder adaptation. We therefore tested whether the var-
iation in protein levels unexplained by transcript levels (Figure 1) was
biased toward maintaining similarity in protein abundances as has been
previously described for proteins more likely under stabilizing selection.

We considered expression evolution in three pairs of recently (less
than 10million years) (Guiher and Burbrink 2008; Kubatko et al. 2011;
Castoe et al. 2012) diverged species: A. piscivorus and A. contortrix,M.
fulvius and M. tener, and S. miliarius and S. catenatus. We found in-
distinguishable correlations between protein levels across species and
transcript levels (Figure 2). For the Agkistrodon pair (Figure 2A), we
found R = 0.74 with a 95% confidence interval (CI) of (0.50, 0.87) for
transcript abundances and R = 0.68 with a 95% CI of (0.40, 0.84) for
protein abundances. For the Micrurus pair (Figure 2B), we found R =
0.75 with a 95%C.I. of (0.43,0.90) for transcript levels and R = 0.85 with

a 95% CI of (0.63, 0.94) for protein levels. For the Sistrurus pair (Figure
2C), we found R = 0.63 with a 95% CI of (0.32,0.81) for transcripts and
R = 0.71 with a 95% CI of (0.45, 0.86) for proteins. In all three cases, the
estimates of R for protein levels were well within the CIs of transcript
levels, and the estimates of R for the transcript levels were well within
the CIs of the protein levels. We therefore found that divergence in
venom composition can be explained by changes in transcriptional
patterns and found no evidence at the species level for protein-level
buffering for a trait under diversifying selection.

We found evidence for protein-level buffering for our single intra-
specific comparison (Figure 2D). Comparing C. horridus with type A
(neurotoxic) and type B (hemorrhagic) venoms, we found R = 0.73 with
a 95% C.I. of (0.27, 0.92) for transcript abundances and R = 0.94 with
a 95% CI of (0.79, 0.98) for protein abundances. Each estimate of R was
outside the CI associated with its counterpart, suggesting a significant
difference in the extent of divergence between protein quantities and
transcript quantities. Protein levels were more highly correlated than
transcript levels, indicating that changes in transcriptional patterns were
buffered post-transcriptionally.Much of the difference between these two
venom types involved loss of transcription of venom genes (i.e., was due
to pretranscriptional regulation) in the type A venom gland (Rokyta et al.
2015), but our analysis could only include toxins detected proteomically.
Nonetheless, this apparent protein-level buffering for only our most

Figure 3 Nearly all highly expressed putative toxins transcripts were detected proteomically. Transcripts were identified as putative toxins on the
basis of homology with known toxins. Failure to detect these putative toxins proteomically could reflect post-transcriptional silencing, misassignment
as toxins, or simply a proteomic detection threshold. The undetected putative toxin transcripts were nearly all expressed at relatively low levels,
suggesting a detection threshold. We found no evidence for highly expressed putative toxins being post-transcriptionally silenced.
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recently diverged pair of taxa could indicate the initial presence of buff-
ering that, in the case of snake venoms under diversifying selection, is
ultimately erased by selection during species divergence.

Protein-level buffering against changes in transcriptional patterns
appeared to be, at best, a transient phenomenon during species di-
vergence. Threeof our four comparisons clearly showed that divergence,
presumably under directional selection, of venom composition was
affected through changes in transcriptional patterns and that these
changes are quantitatively reflected in the venom proteomes. Because
venoms are secretions, protein degradation is eliminated as a potential
post-transcriptional mechanism for buffering, thereby limiting the
number of mechanisms available to accomplish buffering. In addition,
ontogenetic changes in snake venom composition are widespread
(Minton 1975; Mackessy 1988, 1993; Andrade and Abe 1999; López-
Lozano et al. 2002; Lamar 2003; Mackessy et al. 2003; Guércio et al.
2006; Wray et al. 2015; Margres et al. 2015b), indicating that rapid
expression-mediated changes are necessary in venom-gland tissue.
Buffering would hinder these changes as well as the response to di-
rectional selection andmay therefore be inactive in these tissues, if such
mechanisms exist at all.

The role of post-transcriptional silencing
We showed a strong quantitative agreement between venom gland
transcriptomes and venom proteomes (Figure 1), but these analyses
ignored, by necessity, the possibility of qualitative disagreements. Such
qualitative disagreements, particularly the failure to detect the protein
products of highly expressed putative toxin transcripts, have been used
to argue for a role of post-transcriptional regulation or temporally vary-
ing expression patterns in venom glands (Calvete et al. 2007c; Sanz et al.
2008; Wagstaff et al. 2009). Concordance between transcriptomes and
proteomes (qualitative or quantitative) is unlikely to result from biases
or technical limitations. Discordance, however, can arise through true
biological phenomena or through methodological issues; the burden of
proof for establishing discordance is more substantial. Failure to detect
a predicted protein could reflect a detection threshold for our proteomic
approach, erroneous classification of a transcript as toxin-encoding, or
some form of post-transcriptional silencing. Loss of expression of toxin
transcripts during evolution could also be leaky, showing low levels of
residual transcription, but this phenomenon could also be considered to
result from a proteomic detection threshold. A detection threshold
would bias analyses toward detecting the proteins encoded by more
abundant transcripts. Post-transcriptional silencing and toxin misiden-
tification would presumably affect transcripts at all expression levels. For
our 11 transcriptome/proteome comparisons, we found a strong bias
against detecting proteins corresponding to the transcripts with the
lowest expression levels (Figure 3), consistent with a simple proteomic
detection threshold. All of the most highly expressed putative toxin
transcriptswere detectedproteomically, indicating that post-transcriptional
silencing of highly expressed toxins was not a major driver of pheno-
typic evolution for traits evolving under diversifying selection.

Conclusions
The production of proteins is a major link in the genotype–phenotype
relationship, and post-transcriptional regulation has recently been im-
plicated as a significant source of phenotypic variation for a broad array
of species. Examinations of the roles of post-transcriptional regulation
have focused on proteins with abundances that are most likely under
stabilizing selection. We established an extremely simple genotype–
phenotype relationship for snake venoms, a trait commonly under di-
versifying selection, across three major venomous families (Colubridae,
Viperidae, and Elapidae) by showing that most variation in protein

abundances can be explained without invoking post-transcriptional
regulation. We also showed a lack of protein-level buffering during
species divergence, except for perhaps during the early stages, and failed
to find evidence for post-transcriptional silencing. Altogether, our
results showed that changes to the transcriptome drive the evolution
of snake venom composition.
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