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ABSTRACT Parametric and nonparametric methods have been developed for purposes of predicting
phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic
and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict
phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods
including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and
selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes
C, and Bayes Cp. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing
kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of
these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures
consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of
inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability.
The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods
were unable to predict phenotypic values when the underlying genetic architecture was based entirely on
epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architec-
tures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability,
i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE.
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Complex quantitative traits are measured on a continuous scale and
are controlled by a network of many genes, by the environment, and by
genetic by environment interactions. Most traits of economical interest
in agriculture (e.g., grain yield) are measured on continuous scales, i.e.,
they are quantitative. Understanding the complexity of these traits and
accounting for the effects that are contributed by these genes and their
interactions is not trivial.

The gene-by-gene interaction or epistasis is an important research
topic in quantitative genetics. Epistasis can be modeled in different

ways (Cordell 2002). Physiological epistasis is the difference in the
phenotype when the genotype at a locus is influenced by the genotype
at another locus or loci. Fisher (1918) defined epistasis as the deviation
of the genotypic value from the contribution of the sum of additive
effects at all functional loci in the genome. Fisher’s definition of epis-
tasis is also known as statistical epistasis and has been used to quantify
deviations from independence (Wilson 2004). Epistasis has an impor-
tant role in accounting for the genetic variation for quantitative traits,
and excluding it from the prediction equations for simplicity can re-
sult in poor predictions of genetic gain (Cooper et al. 2002).

Most simulation studies of genomic selection (GS) methods
(Meuwissen et al. 2001) have considered genetic architectures in which
the number and relative magnitudes of quantitative trait loci (QTL) have
varied. To our knowledge, no studies of GS methods have considered
epistatic genetic architectures, although Gianola et al. (2006) predicted
nonparametric methods would be better-suited for epistatic genetic
architectures. Although theoretic models predict a significant role
for epistasis in speciation (Dobzhansky 1937; Mayr 1942), adaptation
(Lewontin 1974; Wade 2000), and canalization (Waddington 1949;
Rice 1998), there is little empirical evidence from biometric studies
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of significant epistatic contributions to genetic variability. Biometric
approaches, however, average across epistatic genotypic values at
individual loci and contribute primarily to additive genetic variance
(Cockerham 1954; Cheverud and Routman 1995). With develop-
ment of low-cost high-throughput marker technologies, it has be-
come possible to estimate epistatic interactions based on genotypic
values for all possible pairwise genotypes in genome-wide associa-
tion studies, although searches for higher-order interactions are still
limited by experimental and computational resources (Moore and
Williams 2009). These studies are beginning to reveal that epistasis is
not the exception, but rather the most prevalent form of genetic
architecture for quantitative traits (Flint and Mackay 2009; Huang
et al. 2012). Nonetheless, it was hypothesized that GS should provide
accurate predictions because epistatic gene action will be translated
primarily into additive genetic variance (Crow 2010). Thus, for pur-
poses of this study, we decided to evaluate GS methods for an
extreme case of epistasis with 10 pairs of loci, each consisting of
two alleles at equal frequencies and modeled using the principle of
orthogonality (Goodnight 2000).

The development of DNA markers in the 1980s was an important
step in the process of identifying DNA segments that are statistically
associated with quantitative traits, i.e., QTL mapping and for marker-
assisted selection (MAS). In MAS, markers and phenotypic informa-
tion are used to guide indirect selection of a trait of interest (Fernando
and Grossman 1989). This approach is considered an improved and
more efficient method for selection in plant breeding relative to phe-
notype pedigree–based approaches (Mohan et al. 1997). Extensive
resources have been devoted to develop QTL mapping methodology
as a component of MAS (Young 1996; Melchinger et al. 1998). Marker-
assisted backcrossing (MABC) is one of the simplest examples of MAS.
In MABC, genomic regions defined by markers closely linked to QTL
are identified. These genomic regions are then introgressed into the elite
lines through backcrossing (Bernardo 2010). In MABC, a plant with
a desired gene, called a donor parent, is crossed with an elite or breeding
line, called a recurrent parent. The goal is to introgress the desired gene
into the genome of the recurrent parent (Visscher et al. 1996). Deve-
loping varieties can also involve accumulating multiple desired genes
into a recurrent parent. The marker-assisted process for alleles at mul-
tiple loci is called gene pyramiding. MAS is widely used in gene pyr-
amiding because the use of molecular markers gives the advantage of
selecting the desired plants without extensive phenotyping. With tradi-
tional phenotyping, it is often impossible to distinguish among plants
with all desirable alleles and the plants with some of the desirable alleles
(Huang et al. 1997).

MAS has been shown to be efficient and effective for traits that are
associated with one or a few major genes with large effect but does not
perform as well when it is used for selection of polygenic traits
(Bernardo 2008). QTL detection also results in some false-negative
and false-positive rates, and further QTL mapping does not guarantee
that estimates of genetic effects are correct (Beavis 1994). Also, for
MAS to be useful, the interaction between the QTL and the genetic
background has to be minimal, so the QTL has the same effect in
different genetic backgrounds (Bernardo 2010 p. 223). The genetic
background of an organism refers to all of its alleles at all loci that
can interact with the locus where the QTL is located (Yoshiki and
Moriwaki 2006).

The parametric models and statistical methods introduced for
QTL mapping and MAS do not address genetic improvement for
quantitative traits that are influenced by a large number of genes with
small effects. Some of the statistical challenges arising in MAS include
the specification of threshold for multiple testing, the “large p, small n”

problem [which refers to the situation when the number of predic-
tors, p (marker data points) greatly exceeds the number of indivi-
duals, n, that have been evaluated in the study], difficulty of
interpretation of effects due to collinearity among the explanatory/
predictor variables, model assumptions that cannot be satisfied, and
nonadditivity among genetic effects.

With advanced molecular techniques that provide dense marker
maps, it is possible to overcome some shortcomings of MAS.
Meuwissen et al. (2001) proposed predicting the genotypic value for
individuals using all marker information simultaneously. Their pro-
posed method and the subsequent derivative methods have been
referred to as GS. They modeled the associations between the
markers and a phenotype focusing on calculating a breeding value
for an individual (which can be calculated as the sum of the average
effect of the alleles for the individual’s genotype) instead of identi-
fying significant marker–trait associations. In their approach they
estimated the effect of each QTL and then used the sum of all
estimates to calculate a genotypic value for the individual.

In GS, individuals with both phenotypic and marker information
(called the training set) are used to model the association between the
phenotype and the genotype. The model is used to predict the phenotypic
value of individuals for which only the marker information is available
(called the validation set or testing set). In GS, all available markers are
included in the model, not just those above a significant threshold, thus
eliminating the problem of multiple testing.

Effort is underway to find ways to model epistasis, the gene-by-
gene interaction. In the presence of epistasis, the effect of one locus
changes the effect of another locus on the phenotype. Usually several
loci are involved, which means that multiway interactions may need to
be modeled. Because the volume of marker data points available is
huge, the number of epistatic interactions can be overwhelming and
computationally intractable to estimate with parametric methods
(Moore and Williams 2009).

More recently, Gianola et al. (2006) stated that parametric ap-
proaches to GS have several drawbacks. The parametric model as-
sumptions do not always hold (e.g., normality, linearity, independent
explanatory variables), which suggests the use of nonparametric meth-
ods. Also, the convenient partitioning of genetic variance into additive,
dominance, additive · additive, additive · dominance, etc., only holds
under conditions of linkage equilibrium, random mating of male and
female parents, no inbreeding, no assortative mating, no (natural or
artificial) selection, and no genotyping errors. In breeding programs,
these conditions are all violated. Gianola et al. (2006) proposed non-
parametric and semi-parametric methods to model the relationship
between the phenotype and the markers that are available within the
GS framework. Gianola et al. (2006) proposed nonparametric methods
capable of accounting for complex epistatic models without explicitly
modeling them.

Herein, we review some existing statistical methods used in GS.
First, we discuss the parametric methods in more detail. Then, we focus
on the nonparametric and semi-parametric methods. Among para-
metric methods, we review linear least squares regression, penalized
ridge regression, Bayes ridge regression, least absolute shrinkage and
selection operator (LASSO), and Bayes LASSO methods, best linear
unbiased prediction (BLUP), and some Bayesian alternatives used in
GS (Bayes A, Bayes B, Bayes C, and Bayes Cp). We also explain the
nonparametric kernel regression using the Nadaraya-Watson esti-
mator (NWE) and the semi-parametric reproducing kernel Hilbert
space (RKHS) regression. Finally, we describe support vector machine
(SVM) regression and neural networks (NN) applications to GS. de
los Campos et al. (2013) give an overview of some of the parametric
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methods used in GS, and Gianola et al. (2010) provide information
about some of the nonparametric models used in GS. Heslot et al.
(2012) compared some parametric and nonparametric GS methods.
However, they did not consider epistatic genetic architectures in their
simulated data. Daetwyler et al. (2010) discussed the impact of the
genetic architecture in GS, but they defined genetic architecture by the
effective population size and the number of QTL.

Here, we use simulated data to compare the performance of the
parametric models with the nonparametric procedures for predicting
the genetic value for individuals in a F2 and a backcross (BC) popu-
lations. We simulate the F2 and the BC populations with low and high
heritabilities and compare the two extreme genetic architectures. One
architecture had only additive genetic effects from alleles at 30 loci, and
the other had only two-way epistatic genetic effects among 30 loci. The
performance of the methods is illustrated by comparing the accuracy of
prediction, which we defined by the correlation between the true phe-
notypic value and the predicted phenotypic value and the mean
squared error (MSE). We demonstrate the advantage of some non-
parametric methods for the epistatic genetic architecture. Because the
results for the F2 and BC populations were similar, we only illustrate
the F2 population in this article. In the Supporting Information, we
provide accuracy and MSE values for a simulated BC population with
low and high heritabilities and with two extreme genetic architectures.

Parametric methods in genome-wide selection

Linear least-squares regression model: In GS, the main goal is to
predict the individual’s breeding value by modeling the relationship
between the individual’s genotype and phenotype. One of the simplest
models is:

yi ¼ mþ
Xp
j¼1

Xijmj þ ei; (1)

where i = 1. . .n individual, j = 1. . .p marker position/segment, yi is
the phenotypic value for individual i, m is the overall mean, Xij is an
element of the incidence matrix corresponding to marker j, individ-
ual i, mj is a random effect associated with marker j, and ei is
a random residual. Typically, the residual term, e, is chosen to have
a normal distribution with mean of 0 and variance of s2

e . The model
for the data vector y can be written as:

yn · 1 ¼ mn· 1 þ Xn · pmp· 1 þ en · 1: (2)

To estimate (m, m), we can use least squares to minimize the sum
of squared vertical distance between the observed response and
the estimated response, which can be represented as |y 2 Xm|2

(where | denotes the norm of a vector). The estimate of m obtained
by solving the linear equations X9Xm = X9y. Then, it is estimated as

m̂ ¼ ðX9XÞ�1X9y. For more details about linear models, the reader
can refer to Linear Models in Statistics (Schaalje and Rencher 2000)
or Linear Models with R (Faraway 2006). The elements of the design
matrix X depend on the number of different alleles present. For
example, individuals having marker genotypes AA, Aa, aa have ele-
ments coded as 21, 0, and 1 in Xij, respectively.

One obvious problem with linear regression is that usually the
number of markers (explanatory variables) available is much greater
than the number of individuals with phenotypic information (response
variables), which means that p is much greater than n, and it is
impossible to perform the estimation. Using a subset of the markers

can be an alternative (using a variable selection method like the for-
ward, backward, or stepwise selection procedure) (George 2000), but it
can still perform poorly if the relative ratio of the number of markers
and the number of individuals is large or has multicollinearity, e.g.,
linkage disequilibrium (LD) exists among the markers.

Meuwissen et al. (2001) used a modification of least squares re-
gression for GS. First, they performed least squares regression analysis
on each segment separately using the model y = m + Xjmj + e, where y
is the vector of the phenotypic information, m is the overall mean
vector, Xj is the jth column of the design matrix corresponding to the
jth segment,mj is the genetic effect associated with the jth segment, and
e is the vector of the error terms. By plotting the log likelihood of this
model, segments with significant effects were found. The segments
with significant effect (QTL) were used for simultaneous estimation
by the model: y ¼ mþPq

j¼1Xjmj þ e, where q is the number of QTL.

With this approach, they eliminated the problem of having more pre-
dictor (explanatory/independent) variables than regressands (response/
dependent variables), but it does not fully take advantage of the whole
marker information because only markers with a significant effect are
included in the final model. To overcome some of the drawbacks of the
linear regression approach, other methods for GS have been introduced.

Ridge regression: In marker data, it is very likely that multicollinearity
exists. As discussed in the previous section, multicollinearity can
negatively affect the performance of variable selection methods.
Further, least squares equations are inefficient when the determinant
of the matrix X9X is close to zero due to column dependencies. Using
a penalized regression model (ridge regression of Hoerl and Kennard
1970a,b) can be a solution to this problem. The goal is to derive an
estimator of m with smaller variance than the least squares estimator.
There is a “price to pay” in that the ridge regression estimator of m is
biased; the increase in bias is more than compensated by the decrease
in variance, which results in an estimator m̂R with smallest MSE.
Another advantage of ridge regression is that it can be used when
a large amount of marker information is available, so it can overcome
the “p. n$ problem.

Ridge regression adds an extra term to the likelihood function to
shrink the regression coefficients by an amount depending on the
variance of the covariates. It removes the problem of the columns of
the design matrix being dependent on each other and, hence, the X9X
matrix will be nonsingular. Instead of minimizing the sum of squared
residuals, ridge regression minimizes the penalized sum of squares
|y 2 Xm|2 + l2m9m, where l is the penalty parameter, and the esti-

mate of the regression coefficient is given by: m̂ ¼ ðX9X þ lIÞ�1X9y,
where I is a p · p identity matrix. The penalty parameter l can be
calculated by several different methods, for example, by plotting m̂ as
a function of l and choosing the smallest l that results in a stable
estimate of m̂. Another way to choose l is by an automated procedure
proposed by Hoerl et al. (1975). They claimed that a reasonable choice

of l is given by: l ¼ rs2

ðm̂Þ9ðm̂Þ, where r is the number of parameters in

the model not counting the intercept, s2 is the residual mean square
obtained by linear least squares estimation, and m̂ is the vector of least
squares estimates of regression coefficients.

Meuwissen et al. (2001) implemented ridge regression in GS by
assuming that the marker effects (mj9s j = 1. . .p) were random, and
they were drawn from a normal distribution with VarðmjÞ ¼ s2

m,
where s2

m ¼ s2
a=nk s

2
a represents additive genetic variance expressed

among individuals and nk is the number of marker loci (Habier et al.
2007).

Volume 4 June 2014 | Methods for Genomic Selection | 1029

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/4/6/1027/6025951 by guest on 23 April 2024

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.010298/-/DC1/010298SI.pdf


It can be shown that ridge regression is a special case of the BLUP
(Ruppert et al. 2003), which we demonstrate after introducing BLUP.
Thus, the mixed linear model can be implemented. Within the mixed
model context, the restricted maximum likelihood (REML) estimation
is a good choice for finding a reasonable value for the penalty para-
meter and estimating the variance components (Henderson 1988).
Piepho (2009) discusses some models that feature the ridge regression
in terms of mixed models and uses REML for variance and penalty
parameter estimation in GS.

Ridge regression can also be viewed from a Bayesian perspective.
In this case, we assume that the parameter vector m is random. We
can account for the belief that the estimator of m has a small variance
by a choice of a prior distribution. In particular, we can suppose that

m � N(0, Pb), where
P

b is a known covariance matrix (de Boer
et al. 2005). Given that the likelihood of yi (i = 1, 2, . . .n, where n is the
number of individuals) has a normal distribution with meanPp

j¼1xijmj and variance s2, the Bayesian estimator of m is the mean
of the posterior distribution, and it is given by m̂ BRR ¼�
s2 P21

b þX9X
�21

X9y (Judge et al. 1985 p. 286). Comparing
m̂ BRR to m̂ RR, we can see that they are identical if

P2 1
b ¼ l

s2 I.
Pérez et al. (2010) discussed the application of Bayesian ridge re-

gression in GS. They assumed that the marker effects are independent
and identically distributed (iid) and have a normal prior distribution
with mean 0 and variance s2

b, where: pðmjs2
bÞ ¼

Qn
i¼1Nðmj

��0;s2
bÞ.

Then the mean of the posterior distribution m̂ BRR is equivalent
to m̂ RR if l ¼ s2 2

b

s2 .

Best linear unbiased prediction: The BLUP theory and the mixed
model formulation were first discussed by Henderson (1949), and they
were influential for selection purposes in animal breeding (Henderson
1959). BLUP is a statistical procedure, and it is useful in situations
when the data available are unbalanced (for example, in different
locations the number of individuals is not the same), and it can
accommodate family information (Bernardo 2010). Since Henderson’s
first work in BLUP, the theory has been widely expanded (Henderson
1959, 1963, 1975a, 1975b; Harville 1976). Since the 1990s, BLUP has
been used not only in animal breeding applications (Henderson 1984)
but also in plant breeding (Bernardo 1994).

BLUP was proposed as a tool in GS by Meuwissen et al. (2001).
The random effects model can be written in the form:

y ¼ mþ
Xp
j¼1

Zjmj þ e; (3)

where y is the (n · 1) phenotypic data vector, m is the (n · 1) overall
mean vector, Zj is the jth column of the design matrix, mj is the
genetic effect associated with the jth marker, and p is the number of
markers. The intercept, m, is fixed, and mj is the random effects with
E(mj) = 0, VarðmjÞ ¼ s2

mj
, Var(e) = s2I, and Cov(m, e) = 0. In the

statistical literature, the vector of random effects is usually denoted by
u instead of m. If other covariates are available, then we replace the
intercept m by Xb to include all the fixed effects. Then, we can write:

y ¼ Xbþ Zmþ e; (4)

where b is a p1 · 1 vector of unknown fixed effects where usually the
first element is the population mean, and X is the incidence matrix
that relates y to b. The above equation is generally called a mixed
model (or mixed effects model). The vector b is estimated by the
best linear unbiased estimator (BLUE). In the biological literature,
the term BLUP is occasionally used loosely and refers to both BLUE

and BLUP. BLUP is the predictor of the random effects. It is a linear
function of the data vector y. Within the linear functions of the data
it is unbiased, which means that the expected value of the prediction
is the same as the population parameter, and it can be formulated as
Eðm̂Þ ¼ EðmÞ. In addition within the unbiased linear predictors, it is
the best in the sense of minimizing the MSE. BLUE is similar to BLUP
in that it is a linear function of the data y, it is unbiased among the
linear estimators, and it is best in the sense that it minimizes the MSE.

Henderson (1953) proposed that the BLUE and BLUP of (b,m) be
obtained by maximizing the joint likelihood of (y, m) given by:

Lðy;mÞ ¼ f ðyjmÞf ðmÞ

¼ 1

ð2pÞn=2jRj1=2
�
2
1
2
ðy 2 Xb 2 ZmÞ9R21ðy2Xb2ZmÞ

�

·
1

ð2pÞp=2jGj1=2
�
2
1
2
m9G21m

�
:

By maximizing the likelihood L(y, m) with respect to b, m and
equating it to zero, we obtain a set of linear equations [known as
Henderson’s mixed model equations (MME)]:

�
X9R21X X9R21Z
Z9R21X Z9R21Z þ G21

��
b̂
m̂

�
¼

�
X9R21y
Z9R21y

�
;

where R = Var(e) and G = Var(m). The solution to the MME is the
BLUE of b and the BLUP ofm. Henderson’s derivation assumes that
m and e are normally distributed and maximizes the joint likelihood
of (y, m) over the unknowns b and m. Maximizing the likelihood
implies an optimization criterion of (y2 Xb2 Zm)9R21(y2 Xb2
Zm) + m9G21m, and it can be viewed as the “ridge regression
formulation” of the BLUP (Ruppert et al. 2003).

We have assumed that R and G are known covariance matrices. In
general, they are unknown and need to be estimated together with b,
m. The REML approach to estimate the variance components max-
imizes the “restricted” likelihood associated with a specific set of linear
combinations of the data. The restricted likelihood depends only on
the variance components. REML produces unbiased estimates of the
variance parameters R and G. More information about variance esti-
mation using REML can be found in works by Corbeil and Searle
(1976), Harville (1976), and McGilchrist (1993). There are other ways
to derive the BLUP solution for m. Robinson (1991) showed that that

the BLUE solution to b can be written as: b̂ ¼ ðX9V2 1XÞ21X9V21y,

and the BLUP solution tom can be written as: m̂ ¼ GZ9V21ðy2Xb̂Þ.

LASSO method: To overcome the limitations of linear least squares,
we can use the LASSO for GS. LASSO was first introduced by Tibshirani
(1996), and Usai et al. (2009) first implemented it in GS using cross-
validation. We can write the model for individual i as:

yi ¼
Xp
j¼1

Xijmj þ ei; (5)

where i = 1. . .n individual, j = 1. . .p marker position, yi is the
phenotypic value for individual i, Xij is an element of the incidence
matrix corresponding to individual i and marker j, mj is the marker
effect for marker j, and ei is the random residual. The LASSO esti-
mate of the marker effect is obtained by minimizing the residual sum
of squares

Pn
i¼1

�
yi 2

Pp
j¼1Xijmj

�2
subject to the constraint of the

sum of the absolute value of the marker effects being less than
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a constant s, s $ 0, and we can write it as:
Pp

j¼1

��mj

��# s. This
constraint shrinks some of the marker effects and sets some of them
to zero. One of the major differences between LASSO and ridge
regression is that in LASSO as we increase the penalty, more marker
effects will shrink to zero and in ridge regression all parameters will
be reduced but still remain nonzero.

The LASSO estimator of the regression coefficients m9
j s can be

found by an algorithm that was first described by Tibshirani (1996)
and used computational ideas from Lawson and Hansen (1974). First,
we assume that the elements of the incidence matrix are standardized
such that

Pn
i¼1Xij ¼ 0 and

Pn
i¼1X

2
ij ¼ n. Then, the algorithm de-

scribes a quadratic programming problem with 2p linear constrains,
corresponding to the different signs for the regression coefficientsm9

j s.

For example, if P = 3 then we have:

m1 þm2 þm3# s

m1 þm2 2m3 # s

m1 2m2 þm3 # s

m1 2m2 2m3 # s

�m1 þm2 þm3 # s

�m1 þm2 2m3 # s

�m1 2m2 þm3 # s

�m1 2m2 2m3 # s:

Let f ðmÞ ¼ Pn
i¼1

	
yi2

Pp
j¼1mjXij


2
and for k = 1. . .2p let gk be

a vector of indicator variables 1, 0, 21 depending on the signs of
the regression coefficients corresponding to the kth inequality. Also,

let E ¼ fi : g9
im ¼ sg and S ¼ fi : g9

im, sg. GE ¼ ½g1; g2; . . . g2p �9.
The steps of the algorithm finding the LASSO estimator can be

written as:

1. Let E = {i0}, where i0 corresponds to the least squares estimate of
m and gi0 ¼ signðm̂LSÞ.

2. Find m̂ such that f ðmÞ is minimized subject to GEm# s1.
3. If

Pp
j¼1

��mj

��# s, then done.

If
Pp

j¼1

��mj

��. s, E ¼ fi0; ig such that gi ¼ signðm̂Þ. Repeat steps
2 and 3.

The algorithm described above is computationally intensive. Efron
et al. (2004) proposed a new model selection algorithm called least
angle regression (LARS) that can be used in combination with LASSO
estimation. LARS is similar to the traditional forward selection
method. It starts with all the coefficients (marker effects) at zero. First,
the marker that has the highest correlation with the phenotypic values
is added into the model. The next marker added has to have a corre-
lation with the residual that is at least as large. The third marker
entered into the model is equiangular with the first two markers
already in the model. At each iteration, a new marker is added, and
the algorithm is accomplished in p iterations where p is the number of
the available markers. However, for LASSO, the LARS procedure is
modified. Because the LASSO has a constraint, the LARS procedure
has to apply a restriction, so this model selection method is more

closely related to the stepwise selection method. For a detailed de-
scription of LARS and the LARS–LASSO relationship, the reader can
refer to Efron et al. (2004).

One other important question is how to find the upper bound of the
sum of the absolute value of the marker effects, s. Finding the best value
for s can be viewed as the selection of the size of the best subset of
markers. Usai et al. (2009) used the cross-validation approach of Kohavi
(1995) with random subsampling replication. In every replication, the
data are randomly divided into a training set and a validation set. The
training set is used to estimate the marker effects using the LARS algo-
rithm for the LASSO method. The estimated marker effects were used to
calculate the genomic breeding values (GEBV) for the individuals in the
validation set, and then the correlation coefficients between the GEBV
and the true phenotypic value were reported. The LARS iterations were
carried forward until the maximum correlation was reached.

Bayesian alphabet: Meuwissen et al. (2001) proposed two hierarchi-
cal Bayesian models for GS denoted by Bayes A and Bayes B. In both
methods the data and the variances of the marker positions need to be
modeled. For individual i we can write:

yi ¼ mþ
Xp
j¼1

Xijmj þ ei; (6)

where i = 1. . .n individual, j ¼ 1:::p marker position/segment, yi is
the phenotypic value for individual i, m is the n · 1 dimensional
overall mean vector, Xij is an element of an incidence matrix for
marker j and individual i, mj is a random effect for marker j, and ei is
a random residual. In general the model can be written as:
y ¼ mþPp

j¼1Xjmj þ e.
Inferences about model parameters are based on the posterior

distribution. By Bayes’ Theorem, the posterior is obtained by combin-
ing the prior distribution and the likelihood function. For detailed
information about Bayesian methods, the reader can refer to Kruschke
(2010) or Gelman et al. (2003).

The difference between Bayes A and Bayes B lies in the way in
which we model the variances of parameters. In both methods each
marker position has its own variance. The Bayes A approach applies
the same prior distribution for all of the variances of the marker
positions. The scaled inverted (or inverse) chi-squared probability
distribution x22(n, S2) can be used with degrees of freedom n and
scale parameter S2 as the prior distribution. This is a convenient
choice because it is a conjugate prior so the posterior distribution is
in the same family of distributions as the prior distribution. The
posterior distribution is also a scaled inverse chi-square distribution
x22ðn þ nj; S2 þmj9mjÞ where nj is the number of haplotype effects at
marker position j.

The Bayes B approach seems more realistic for GS than Bayes A.
The only difference between the two methods is the prior for the
variance components. Bayes B assumes that not all markers contribute
to the genetic variation. It has a prior density on the variance that is
a mixture. It has a high probability mass at smj = 0 and an inverted
chi-square distribution when smj . 0. It can be summarized as smj =
0 with prob= p and smj � x22(n, S) with prob=(1 2 p).

For the Bayes B method if m9m . 0, then one cannot sample
s2
gj ¼ 0. So, we can sample mj and s2

gj simultaneously by

pðs2
mj;mj

��y�Þ ¼ pðs2
mj

��y�Þpðmj

��s2
mj; y

�Þ, where y� is the data that

are corrected for the mean and for all genetic effects except mj.
To sample from the distributionpðs2

mi

��y�Þ, we can use the Metrop-
olis-Hastings algorithm in the following way:
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1. Sample s2
mðnewÞ from the prior distribution of pðs2

mjÞ.

2. s2
mj ¼ s2

mðnewÞ with probability of Min

2
4p

	
y�js2

mðnewÞ



p
�
y�js2

mj

� ; 1

3
5.

Using simulated data, it was shown that the Bayesian methods
perform better in terms of prediction accuracy than the linear least
squares regression, the ridge regression, and the BLUP method
(Meuwissen et al. 2001; Habier et al. 2009, 2010). However, as Gianola
et al. (2009) pointed out, the choice of the degrees of freedom and the
scale parameters of the scaled inverse chi-square distribution can in-
fluence the outcome. Improved Bayesian methods were developed by
Habier et al. (2011) to deal with the weakness of Bayes A and Bayes B.
Bayes C uses a common variance for all SNPs, and for Bayes D the
scale parameter of the scaled inverse chi-square distribution is esti-
mated instead of specified by the user. Bayes Cp and Bayes Dp
(Habier et al. 2011) are the modification of Bayes C and Bayes D
where the probability of having a zero effect SNP p is estimated.

Bayesian LASSO: Park and Casella (2008) introduced the Bayesian
LASSO method for estimating the regression coefficients. They used
an idea from Tibshirani (1996) to connect the LASSO method with
the Bayesian analysis. Tibshirani (1996) noticed that the LASSO esti-
mates of the regression coefficients can be viewed as posterior mode
estimates assuming that the regression coefficients have double expo-
nential prior distributions. The Bayesian LASSO is also used in GS (de
los Campos et al. 2009, 2010a; Long et al. 2011) using the hierarchical
model with the likelihood function:

f
�
yjm;X;m;s2� � N

�
mþ Xm;s2I

�
; (7)

where y is the n · 1 data vector, m is the overall mean vector, m is
a vector of the marker effects, and X is the design matrix that
connects m to y. N(m + Xm, s2I) denotes the normal density with
mean m + Xm and variance s2I where I is an n · n identity matrix.
The prior distribution on the marker effects m9

j s j = 1. . .p can be
written as pðmj

��t2j Þ � Nð0; t2j Þ, and the prior distribution on tj is
p(tj|l) � Exp(l) where Exp(l) denotes the exponential distribution
with rate parameter l. Park and Casella (2008) and de los Campos
et al. (2009) presented the full conditional distributions that were
used to sample via the Gibbs sampler. de los Campos et al. (2009)
expanded the model and assigned a prior distribution to l2. The
prior has a Gamma distribution with shape parameter a1 and scale
parameter a2, and it can be written as p(l2) � G (a1, a2); l has two
interpretations. In the Bayesian formulation, it is the rate parameter
that controls the shape of the prior distribution of the tj9s. In the
LASSO setting, l controls the penalty for minimizing the MSE.

Nonparametric methods in genome-wide selection
In this section, we review some of the nonparametric estimation
methods that have been proposed for the case where the form of the
relationship between a response variable and a set of predictors is
unknown. A popular approach, at least in terms of usage, is based on
the kernel method proposed by Silverman (1986) in the context of
density estimation. In that context, the goal is to estimate the unknown
density using a smooth curve (Schucany 2004). The kernel method is
the most commonly used nonparametric estimation procedure.

The kernel density estimator f̂ ðxÞ can be written in the form:

f̂ ðxÞ ¼ 1
nh

Xn
i¼1

K

�
x2Xi

h

�
;

where n is the number of observations, K is the kernel function that

satisfies the condition
Z

KðxÞdx ¼ 1, h is positive real-valued

smoothing parameter (also called window width or bandwidth), x
is the focal point, and Xi is the p · 1 dimensional vector of dummy
covariates for observation i. We can calculate f̂ ðxÞ at several focal
points x, and the observations that are closer to the focal point will
get a higher weight in the calculation, so the kernel function K

�
x2Xi

h

�
gives bigger weight to observations closer to the focal point. The
kernel function K is usually chosen to be a symmetric unimodal
density, so the kernel density estimator f̂ ðxÞ is also a density. A
commonly used kernel function is the Gaussian kernel given by:

K
	xi 2 x

h



¼ 1

ð2pÞp=2
exp

�
2
1
2

	xi 2 x
h


9	xi 2 x
h


�
:

In this expression, observations with xi coordinates closer to the focal
point x are weighted more strongly in the computation of the fitted
value ÊðyjxÞ. The window width provides information about the range
of observations that are included (Sheather 2004). Figure 1 shows how
the kernel density estimation changes with different bandwidth values.
Using simulated data from a mixture of two normal distributions, the
second, third, and fourth panels show how the estimation changes
with the change of the bandwidth value.

When h = 0.1, the data have strong influence on the density
estimate, resulting in little bias and large variability among estimates.
It is called an undersmoothed estimate. As we increase the bandwidth
value, the estimates become smoother. When h = 10, the spread is too
big and even the bimodal feature of the data disappears, which implies
that the estimate is oversmoothed. Setting the bandwidth too large
results in a large bias with little variance.

Nadaraya-Watson estimator: In the context of GS, Gianola et al.
(2006) considered the regression function:

yi ¼ gðxiÞ þ ei; (8)

i = 1, 2, . . ., n where yi phenotypic measurement on individual i, xi is
a p · 1 vector of dummy SNP covariates observed on individual
i, g(.) is some unknown function relating genotypes to phenotypes,
g(xi) = E(yi|xi), and ei is a random residual effect for individual
i where ei � (0, s2) and is independent of xi.

The conditional expectation function can be written in the form:

gðxÞ ¼

Z
ypðx; yÞdy
pðxÞ :

A nonparametric kernel estimator (Silverman 1986) can be used to
obtain an estimate of p(x). The estimator has the form:

p̂ðxÞ ¼ 1
nhp

Xn
i¼1

K
	xi 2 x

h



;

Z 2N

N
p̂ðxÞdx ¼ 1;

where xi is the observed p-dimensional SNP genotype of individual i,
i = 1, 2, . . ., n. Similarly,

p̂ðx; yÞ ¼ 1
nhpþ1

Xn
i¼1

K
	yi 2 y

h



K
	xi 2 x

h



:

Using these expressions, Nadaraya (1964) and Watson (1964)
showed that the conditional expectation function can be written as:
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ÊðyjxÞ ¼ ĝðxÞ

¼

Z
yp̂ðx; yÞdy
p̂ðxÞ

¼
1
nhp

Xn

i¼1
yiK

	xi 2 x
h



1
nhp

Xn

i¼1
K
	xi 2 x

h




¼
Xn
i¼1

yiwiðxÞ; wiðxÞ ¼
K
	xi 2 x

h



Xn

i¼1
K
	xi 2 x

h


:

The estimator is just a weighted sum of the observations yi, i = 1. . .n
and is called the NWE.

The selection of the bandwidth, h, value is challenging. Hardle
(1990) discussed several approaches to select h, including the leave-
one-out cross-validation (CV), penalizing functions, and plug-in
methods. Gianola et al. (2006) used the leave-one-out CV approach
to select the bandwidth. In this approach, first exclude the ith obser-
vation (yi, x) and fit the model to the other n 2 1 observations. Using
the marker information, predict ĝðxijhÞ. This is repeated for all n
observations. The CV criterion is (Clark 1975):

CVðhÞ ¼
Xn

i¼1

�
yi2ĝðxijhÞ

�2
n

:

The CV estimate of h is the value of h that minimizes CV(h).

Reproducing kernel Hilbert space: Gianola et al. (2006) proposed
a semi-parametric kernel mixed model approach in which they com-
bined the nice features of a nonparametric model (described above)
with a mixed model framework. The model can be written as:

yi ¼ wi9bþ zi9uþ gðxiÞ þ ei; (9)

where i = 1, 2, . . ., n, b is a vector of fixed unknown effects (e.g.,
physical location of an individual), u is a q · 1 vector of additive
genetic effects, wi9 and zi9 are known incidence vectors, g(xi) is an

unknown function of the SNP data and the vector of residuals, and e
is assumed to have a Nð0; Is2

e Þ distribution. The vector containing
additive genetic effects, u is distributed as Nð0;As2

uÞ, where s2
u is the

additive genetic variance and A is the additive relationship matrix.
The authors suggested two different methods for estimation in this

model. The first strategy, denoted “Mixed Model Analysis,” consists of a
two-step approach with a “corrected” data vector yi 2 gðxiÞ ¼ wi9bþ
z9uþ ei in the second step of the analysis. A Bayesian approach can also
be used where one can draw samples from the pseudo posterior
distribution ½b; u;s2

u;s
2
e

��y��, and then form semi-parametric draws
of the total genetic value.

The other method they suggested is the “Random g(.) function”
approach, where it is assumed that b, u are known. In this case:

ĝðxjb; u; y; hÞ ¼ Ê
	
yi 2wi9b2 zi9u

��x


¼
Xn
k¼1

wkðxÞ
	
yk 2wk9b2 zk9u



;

and draws of b(j), u(j) can then be obtained from the distribution
½b; u;s2

u;s
2
e

��y�; h�.
Finally, Gianola et al. (2006) discuss estimation in the RKHS

mixed model. The set-up is similar to the mixed model approach,
but estimation of model parameters is performed using a penalized
sum of squares approach. As before, the model can be written as:

yi ¼ wi9bþ z9uþ gðxiÞ þ ei; (10)

where i = 1, 2, . . ., n. The penalized sum of squares is given by:

SSðgðxÞ; hÞ ¼
Xn
i¼1

h
yi 2wi9b2 zi9u2 gðxiÞ

i2 þ hkgðxÞk;

where the penalty kg(x)k is a function of the second derivatives of
g(x). The goal is to find g(x) that minimizes the penalized SS. Wahba
(1990) showed that the minimizer can be written as:

gð:Þ ¼ a0 þ
Xn
j¼1

ajK
�
:; xj

�
;

where K(.,.) is the reproducing kernel.

Figure 1 The influence of the bandwidth in kernel density estimation. From left to right, the first plot shows simulated data from a mixture of two
normal distributions. The second, third, and fourth plots show the Gaussian kernel density estimates using bandwidth values h = 0.1, h = 2, and h = 10.
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Support vector machine regression: SVM was proposed by Vapnik
and discussed by Cortes and Vapnik (1995). SVM is a supervised
learning technique that was originally developed as a classifier. A
training data set is used to develop a maximum margin classifier that
produces the largest possible separation between two classes of obser-
vations. In the linearly separable case, if observations (xi) 2 Rp, then
the separator is a hyper-plane in Rp21.

Because fitting a regression model essentially consists of finding an
optimal projection of the observations on a lower-dimensional hyper-
plane, the idea can be used to estimate the unknown regression
function subject to restrictions. The reader can refer to Hastie et al.
(2009), Steinwart and Christmann (2008), and Christianini and
Shawe-Taylor (2000) for a review of SVM. SVM regression was adop-
ted by Maenhout et al. (2007) and Long et al. (2011) for GS in plant
breeding. A nice feature of SVM regression in plant breeding appli-
cations is that the relationship between the marker genotypes and the
phenotypes can be modeled with a linear or nonlinear mapping func-
tion that takes samples from a predictor space to an abstract, multi-
dimensional feature space (Hastie et al. 2009).

Suppose that we have a training sample S = {(xi, yi), xi e Rn, yi e R,
i = 1. . .n}, where xi is a p dimensional vector containing the genotypic
values for the pmarkers for individual i, and yi is the phenotypic value
for individual i. A model that describes the relationship between the
phenotype and the genotype of an individual can be written as:

f ðxÞ ¼ bþ wx; (11)

where b is a constant and w is a vector of unknown weights. The
constant b reflects the maximum error we are willing to commit
when estimating the weights w. We learn about the function f(x)
by minimizing the expression l

Pn
i¼1Lðyi 2 f ðxiÞÞ þ 1

2kwk2. L(.)
denotes the loss function that measures the quality of the estimation.
The regularization parameter l quantifies the trade-off between the
sparsity and the complexity of the model. Increasing l implies
a higher penalty on the error. The norm kwk of vector w is inversely
associated with model complexity; by choosing w to minimize kwk,
we reduce model complexity.

There are many loss functions used for SVM regression. Some of
the popular loss function choices include the squared loss, absolute
loss, and the e-insensitive loss. Here, we present these loss function
formulations.

1. The squared loss function has the form L(y 2 f(x)) = (y 2 f(x))2.
It scales the loss quadratically by the size of the error. Using this
loss function indicates that outliers are also weighted quadrati-
cally, which requires the user to deal with the outliers before the
regression analysis.

2. The absolute loss function has the form L(y 2 f(x)) = |y 2 f(x)|.
The absolute loss function scales the loss linearly by the size of the
error eliminating the difficulty of using data sets with outliers.

3. The e-insensitive loss function has a form:

Lðy2 f ðxÞÞ ¼

0 if jy2 f ðxÞj, e
jy2 f ðxÞj2 e otherwise

;

where e determines the number of support vectors used in the re-
gression function. By definition (Vapnik 1995; Vapnik and Vashist
2009), a support vector is a vector xi that satisfies the equation yi(wxi +
b) = 1. Increasing e implies that fewer support vectors are used in the
fitting. The e-insensitive loss function ignores the errors in the

regression that have size less than e. When the error is greater than
e, the loss is |y 2 f(x)| 2 e.

Figure 2 illustrates the absolute loss, squared loss, and e-insensitive
loss functions as a function of the error y 2 f(x).

In the remainder, we focus on the e-insensitive loss function, which
needs a more robust representation to account for the noise in the data.

We can add extra “cost” (or allow for additional uncertainty) by
introducing non-negative “slack variables” j constrained as follows
(Long 2011):

j1i $ yi 2 f(xi) 2 e, where i = 1, . . ., n n is the number of training
observations,

j2i $ f(xi) 2 yi 2 e, where i = 1, . . ., n.
We can now re-write the objective function to be minimized as:

l
Xn
i¼1

ðj1i þ j2iÞ þ
1
2
kwk2:

The solution to this constrained minimization problem has the
form:

f̂ ðxÞ ¼
Xn
i¼1

aixix þ b

(Nocedal and Wright 1999). The solution depends on the training
data through the inner product hxi, xji, which is a linear function of
the observations.

To take advantage of higher dimensional feature spaces, we can
introduce the data via nonlinear functions. For example, we can
replace the inner product of the data by a kernel function:

k
�
xi; xj

� ¼ �
ϕðxiÞ; ϕ

�
xj
��
:

Some commonly used kernel functions include:

1. The linear kernel k(x, z) = hx, zi
2. The Gaussian radial basis function k(x, z) = exp(2skx 2 zk2),

where s is the bandwidth parameter
3. The Laplace radial basis function k(x, z) = exp(2skx 2 zk).

The solution to the minimization problem can also be written
as a function of the kernel function. The resulting expression is
f̂ ðxÞ ¼ Pn

i¼1aikðx; xiÞ þ b. The choice of the kernel function and of
the tuning parameters l, e, and s are not straightforward. Because
optimizing SVMs is not the focus of this article, we refer the reader to
Cherkassky and Ma (2004).

Neural networks: NNs represent a nonparametric prediction pro-
cedure that captures additivity and epistasis by being able to model
linear and complex nonlinear functions. The original idea of NN came
from the theory of how neurons in the human brain work and
interact, and how the brain conducts computations. In the NN, every
unit is analogous to a brain neuron and the connections between them
are analogous to synapses (Hastie et al. 2009). The first introduction of
NNs in the context of brain architecture was presented by Bain (1873)
and James (1890). McCulloch and Pitts (1943) developed a mathemat-
ical model for NNs.

The basic layout of the NN is a two-stage network with three types
of layers: an input layer; a hidden layer; and an output layer. This
model is called the feed-forward NN and is illustrated in Figure 3.

Figure 3 shows a diagram of a three layer feed-forward NN with K
input layer units, L hidden layer units, and M output layer units.
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H1, H2, . . ., HL are called hidden layer units because they are not
directly observed. When the NN is used to estimate a regression func-
tion, there typically is only one output layer unit. The hidden layer
units are functions of linear combinations of the inputs, and the output
layer units are functions of the hidden layer units. The output function
of a feed-forward NN can be expressed in the following form:

f ðIkÞ ¼ b0 þ
XL
l¼1

blsðwl; bl; IkÞ; k ¼ 1; 2; . . . ;K; (12)

where K is the number of units in the input layer, Ik is the kth input,
b0 e RM is the intercept (bias terms),M is the number of output layer
units, L is the number of hidden layer units, bl (l = 1, 2, . . ., L) are
the output layer weights connecting the lth hidden layer unit to the
output layer units, s is the activation function modeling the con-
nection between the hidden layer and the output layer, and wl e RK

and bl e R are the unknown learning parameters of the hidden layer
unit l (l = 1, 2, . . ., L) connecting the kth neuron in the input layer to
them (Romero and Alquézar 2012).

In GS, typically Ik represents a vector of predictors (marker gen-
otypes or other information) collected on individual k (k = 1, 2, . . .,
K), where K is the number of individuals in the analysis. The activa-
tion function s is typically chosen to be the sigmoid (logistic) or the
Gaussian radial basis function.

Gianola et al. (2011) implemented NNs for GS using two real data
sets. Other examples are shown in work by Lampinen and Vehtari
(2001) and Titterington (2004).

MATERIALS AND METHODS
For the purpose of illustrating the parametric and nonparametric
prediction approaches, simulated data were created by the R (RDevelop-
ment Core Team 2008) package QTL Bayesian interval mapping

(“qtlbim”) (Yandell et al. 2012). R can be downloaded from http://
www.r-project.org, the qtlbimpackage can be accessed by library(qtlbim)
in R, and the description of the package can be found at http://cran.r-
project.org/web/packages/qtlbim/qtlbim.pdf. The reader can refer to
Yandell et al. (2007) for detailed information about the qtlbim package.
There are other publications as well where the qtlbim package is used to
implement statisticalmethods. Some examples includeYi et al. (2007), Yi
and Shriner (2008), and Piao et al. (2009). For comparing methods, we
used a simulated F2 population with specifications listed in Table 1.

We simulated four sets of phenotypic and genotypic information for
a F2 and a BC population. The results for the BC population can be

Figure 3 A three-layer feed-forward neural network with K input layer
units, L hidden layer units, and M output layer units.

Figure 2 Loss functions used for SVM regression. The first panel shows the absolute loss function. The second panel is the square loss function,
and the last panel is the e-insensitive loss function.
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found in the supporting information section. For each set we created 20
replicates, which yielded to a total of 80 phenotypic and 80 genotypic
data sets. Within each replicate we created 25 different training–testing
data sets. Half of the data sets assume only additive effects and half
assume only epistatic effects without any additive effects. We only
evaluated the two extreme genetic architectures. Finally, for each ge-
netic architecture, we generated data with two different narrow sense
heritabilities. The low heritability was determined to be 0.30, and the
high heritability was 0.70. For each of the simulated combinations of
population, genetic architecture, and heritability, the data contain phe-
notypic information for 1000 individuals and genotypic information
for 2000 biallelic markers (the possible values coded as “A” and “H”) for
each individual. Out of the 1000 individuals, 800 were chosen randomly
to be in the training set to fit the model, and 200 individuals were in the
testing set.We predicted the phenotype for the individuals in the testing
set. The qtlbim package uses Cockerham’s model as the underlying
genetic model. The simulated genome has 10 chromosomes, each hav-
ing a specified length. The 2000 markers were distributed throughout
the genome in such a way that each chromosome had 200 markers and
the markers were equally spaced over the chromosomes. We assumed
no missing genotypic values and no missing phenotypic values. The
phenotypic values are normally distributed.

For the additive model, we placed two QTL on each of the 10
chromosomes with either positive or negative additive effect. For the
additive model we assumed no epistatic interaction.

For the epistatic model, we only considered two-way interactions
between the QTL. The interacting QTL were at the same genomic

location as the QTL for the additive model, and only neighboring QTL
were associated with each other, resulting in 10 two-way epistatic
interactions, with each having either positive or negative epistatic effect
on the phenotype. For the epistatic model, we assumed that the QTL
contributed no additive effect. The phenotypic values were drawn from
a normal distribution and are based on the P = G + E model. Figure 4
shows the histograms of the simulated phenotypic values for the four
population–genetic architecture–heritability combinations.

To compare the performance of the methods, we used cross-
validation, where we divided the data into training sets and testing
sets. The training sets were used to fit the models, and the testing sets
were used to determine the performance of the particular method. The
performance of the methods was calculated by the accuracy of
prediction and the MSE. We define accuracy of prediction as the
correlation between the true phenotypic values and the predicted
phenotypic values. We evaluated parametric methods including
parametric least squares regression, ridge regression, Bayesian ridge
regression, BLUP, LASSO, Bayesian LASSO, Bayes A, Bayes B, Bayes
C, and Bayes Cp. We also evaluated nonparametric methods, includ-
ing NWE, RKHS method, SVM, and NN. To implement the para-
metric and nonparametric methods, the statistical software R and
software written in C++ provided by the Animal Science Department
at Iowa State University were used. Specifications of the parameters
and inputs for each method are described below.

Least squares regression
Because the number of markers exceed the number of the individuals
in all simulated data sets, the idea of Meuwissen (2001) was adopted,
and we first performed simple regression by coding each marker
genotype as21, 1. After fitting the 2000 simple linear models, one for
each marker, we chose 300 of the markers with the most significant
p-values. Then, these 300 markers were included into a final model,
and we simultaneously used them to fit a linear model. To perform
the linear regression, the lm function was used that can be found in
the stats package (R Development Core Team 2008) in R. Finally, the
prediction for the testing set was performed by using the marker data

n Table 1 Specification of the simulated F2 population: genetic
architecture and heritability

Genetic Architecture Heritability

Additive 0.70
Epistatic 0.70
Additive 0.30
Epistatic 0.30

Figure 4 The histograms of the simulated phenotypic values. The histograms represent the distribution of the phenotypic values for the F2 population.
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for the testing set and the output for the estimated marker effects
provided by the lm function.

Ridge regression
For this method, we used Gustavo de los Campos’ software written in
R. The code implements the calculation of the ridge regression esti-
mation of the marker effects discussed in the ridge regression section
and uses these estimates to perform the prediction for the individuals
in the testing set. For the procedure, all of the available phenotypic
and marker information is used. In the estimation of the marker effect,
the penalty parameter l is chosen to have a value of: 12 h2

h2 VarðXÞ,
where h2 is the narrow sense heritability and Var(X) is the sum of the
2000 marker variances. For all of the scenarios, we used h2 = 0.4.

Bayesian ridge regression
To fit the Bayesian ridge regression model, the function Bayesian
linear regression (BLR) was used, which can be found in the BLR
package (de los Campos and Rodriguez 2010) in R. For the specifica-
tions of the BLR function, we used a Gaussian prior for the marker
effects with mean 0 and a common variance s2

BR, where s2
BR is un-

known. s2
BR is assigned to have a scaled inverse x2 distribution with

degrees of freedom dfBR = 5 and scale parameter SBR = 0.01. The
residual variance sE has a scaled inverse x2 distribution with degrees
of freedom dfE = 4 and scale parameter SE = 1. The BLR function
implements the Gibbs sampler, and the number of iterations is spec-
ified to be 20,000. We used 2000 iterations for the burn-in period
without any thinning. To fit the Bayesian ridge regression, we used all
available phenotypic and genotypic data.

BLUP
To implement BLUP, we used the mixed.solve function in R that can
be found in the rrBLUP package (Endelman 2011). The available
marker data were used as the design matrix for the random marker
effects, and there was no fixed effect specified. The prediction was
performed using the marker data for the testing set and the output for
the predicted marker effects provided by the mixed.solve function.

LASSO
To predict phenotypic values in the testing set using the LASSO
method, we used the glmnet function of the glmnet package (Friedman
et al. 2010) in R. For the initial parameter values, the default setting
was applied. The prediction was performed with the tuning parameter,
l, that minimized the average cross-validation error (cvm).

Bayesian LASSO
To fit the Bayesian LASSO method, the function BLR of the BLR
package (de los Campos and Rodriguez 2010) in R was used. The
regularization parameter, l, is specified to be random and has
a Gamma prior distribution with shape parameter a1 = 0.53 and rate
parameter a2 = 0.00005. The residual variance sE has a scaled inverse
x2 distribution with degrees of freedom dfE = 4 and scale parameter
SE = (df 2 2)(12 h2)Var(y), where we specify that df = 4, h2 = 0.5, and
Var(y) is the phenotypic variance. The Gibbs sampler was applied
with 20,000 iterations, and 2000 iterations were in the burn-in period.
The chain was not thinned.

Bayesian alphabet
To implement the Bayes A, Bayes B, Bayes C, and the Bayes Cp
models, software called Gensel (version 2.12) was used. GenSel was
written by Fernando and Garrick (2008) in C++ and is used for GS in
animal breeding populations. The software is not available for the
public. However, it is available to Iowa State University research col-
laborators working on GS.

In GenSel Bayes A, Bayes B, Bayes C, and Bayes Cp have been
implemented. We used the settings for the four methods that are listed
in Table 2.

Nadaraya-Watson estimator
To use the NWE for predicting the phenotypic values in the testing
set, first we formed the cross-validation criteria and we evaluated it on
a grid of values. We examined the cross-validation criteria between 1
and 1000 and chose the value to be the bandwidth, h, that minimized
the criteria. Table 3 shows the bandwidth values that minimized each
of the four data combinations for the NWE prediction. The code for
calculating the optimal bandwidth value and for the prediction was
written in R.

Reproducing kernel Hilbert space
The RKHS regression was based on methods and algorithms
described by de los Campos et al. (2010b) and the R implementation
was developed by Gustavo de los Campos et al. (2010b). To specify the
RKHS regression, we chose the Gaussian reproducing kernel with the
Euclidean distance for all of the eight combinations of genetic archi-
tectures, heritabilities, and population types. We fitted the model using
three arbitrarily chosen bandwidth values. We performed the predic-
tion for the testing set with each of the bandwidth values, and we
averaged the three values of accuracy of selection and the three MSE
values.

Support vector machine
To implement the SVM regression, we used the ksvm function of the
kernlab package (Karatzoglou et al. 2004) in R. For the ksvm function
we used epsilon-regression as the type and the radial basis (Gaussian)

n Table 3 Bandwidth values used for each of the four
combinations of genetic architectures and heritabilities for the
Nadaraya-Watson prediction

Genetic Architecture Heritability Bandwidth Value

Additive 0.70 195
Epistatic 0.70 195
Additive 0.30 205
Epistatic 0.30 205

n Table 2 Parameter specifications for Bayes A, Bayes B, Bayes C,
and Bayes Cp used in GenSel

Parameters Values

Chain length (number of iterations) 41,000
Burn-in period (number of iterations) 1000
Genotypic variance for data with h2 = 0.30 0.42
Genotypic variance for data with h2 = 0.70 2.10
Residual variance for data with h2 = 0.30 0.98
Residual variance for data with h2 = 0.70 0.90
Degrees of freedom for residual variance 10
Degrees of freedom for marker variance 4
p 0.70

The number of iterations used for chain length, burn-in period, the genotypic
variance, the residual variance, the degrees of freedom for residual variance, the
degrees of freedom for marker variance, and the probability corresponding to
having a 0 effect marker are shown.
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kernel as the kernel function. After fitting the model, the predict func-
tion was used to perform the prediction of the phenotypic values for the
testing set. For the other input parameters, the default values were used.

Neural network
We implemented the NN model using the brnn function of the brnn
package (Rodriguez and Gianola 2013) in R. This function fits a two-
layer NN.We first map the input information into some basis function.
Then, the inputs of the NN model are the marker-derived principal
components. We specified the number of neurons to be three and the
number of epochs to train to be 30 in the model. The other parameters
were left at the default setting. For a detailed description of the appli-
cation of the NN using the R package brnn, the reader can refer to
Pérez-Rodiguez and Gianola (2013) and Pérez et al. (2013).

RESULTS AND DISCUSSION
We compared 10 parametric and four nonparametric statistical GS
methods. Comparisons were based on predicted accuracies of a simulated

F2 progeny derived from crosses of inbred lines where genotypic
variability was responsible for either 30% or 70% of the phenotypic
variability. The underlying genetic architectures responsible for the
genotypic variability consisted of 20 independently segregating
biallelic loci that contributed equally either in an additive manner
to a quantitative phenotype or through additive by additive epistatic
interactions among 10 pairs of loci. Each GS method was applied to
20 sets of simulated progeny with 25 replicates for each of the four
combinations of genetic architecture and heritability, which yielded
500 total replicates for each combination. Training sets were used to
develop a model, and the model was used to predict phenotypes in
the testing sets. Training sets consisted of simulated phenotypes and
2000 marker genotypes for 800 random progeny while the testing sets
associated with the training sets consisted of the same information for
200 progeny derived from the same cross. The accuracy of prediction
was determined by calculating the correlation between the predicted
phenotypic values for the 200 individuals in the testing set with the
simulated phenotypic values for the same 200 individuals. The MSE

n Table 5 Mean and SE of the prediction accuracy values for the parametric and the nonparametric methods for the F2 population with
heritability h2 = 0.30

F2, h2 = 0.30, Accuracy Additive Mean Epistatic Mean Additive SE Epistatic SE

Least squares regression 0.33 0.09 0.06 0.06
Ridge regression 0.50 20.01 0.05 0.07
Bayesian ridge regression 0.50 20.01 0.05 0.07
BLUP 0.50 20.01 0.05 0.07
Lasso 0.50 20.01 0.05 0.07
Bayes Lasso 0.50 0.00 0.05 0.07
Bayes A 0.50 0.00 0.05 0.07
Bayes B 0.50 0.00 0.05 0.07
Bayes C 0.50 0.00 0.05 0.07
Bayes Cp 0.50 20.01 0.05 0.07
Nadaraya-Watson estimator 0.40 0.16 0.05 0.07
RKHS 0.47 0.11 0.05 0.06
Support vector machine 0.47 0.14 0.05 0.07
Neural network 0.48 0.00 0.06 0.07

Mean and standard error of the prediction accuracy values for both the additive and the epistatic cases. The first 10 methods are parametric and the last four are
nonparametric. The calculations for the epistatic mean and epistatic SE for the LASSO method are based on 184 replicates, for the epistatic mean and epistatic SE for
the neural network method they are based on 498 replicates, and, for the rest, the calculations are based on 500 replicates.

n Table 4 Mean and SE of the prediction accuracy values for the parametric and the nonparametric methods for the F2 population with
heritability h2 = 0.70

F2, h2 = 0.70, Accuracy Additive Mean Epistatic Mean Additive SE Epistatic SE

Least squares regression 0.56 0.09 0.05 0.06
Ridge regression 0.80 0.02 0.02 0.07
Bayesian ridge regression 0.80 0.01 0.02 0.07
BLUP 0.80 0.01 0.02 0.08
LASSO 0.82 20.01 0.02 0.05
Bayes LASSO 0.81 0.01 0.02 0.07
Bayes A 0.81 0.00 0.02 0.07
Bayes B 0.81 0.01 0.02 0.07
Bayes C 0.81 0.01 0.02 0.07
Bayes Cp 0.83 0.01 0.02 0.07
Nadaraya-Watson estimator 0.67 0.35 0.04 0.06
RKHS 0.76 0.29 0.03 0.05
Support vector machine 0.78 0.33 0.03 0.07
Neural network 0.77 0.05 0.03 0.09

Mean and SE of the prediction accuracy values for both the additive and the epistatic cases. The first 10 methods are parametric and the last four are nonparametric.
The calculations for the epistatic mean and epistatic SE for the LASSO method are based on 213 replicates, for the epistatic mean and epistatic SE for the neural
network method they are based on 493 replicates, and, for the rest, the calculations are based on 500 replicates.
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values were determined by calculating the sum of the squared
differences between the 200 predicted phenotypic values in the testing
set and the 200 simulated phenotypic values, and then dividing the
sum by 200.

Table 4 and Table 5 report the average prediction accuracies and
SE (sampling variabilities) of the 10 parametric and four nonparamet-
ric methods applied to the 500 replicates of the four combinations of
genetic architecture and heritability. Table 6 and Table 7 report the
average MSE values and SE of the MSE values of the 14 methods
applied to the 500 replicates of the four combinations of genetic
architecture and heritability. Figure 5, Figure 6, Figure 7, and Figure
8 each contain 14 boxplots of accuracy of prediction values for the 14
different methods. The boxplots show the distribution of the accuracy
of prediction values for the 500 runs. Figure 9, Figure 10, Figure 11,
and Figure 12 each contain 14 boxplots of MSE values for the 14
different methods. In each figure, the first 10 boxplots are for the
parametric methods, and the last four (shaded) are for the nonpara-
metric methods. These boxplots show the distribution of the MSE
values for the 500 runs. The first plot of Figure 13 shows the ratio
of the accuracy averaged over the parametric methods (excluding the

least squares method because it is an outlier) and the accuracy aver-
aged over the nonparametric methods, and the second plot of Figure
13 shows the ratio of the MSE averaged over the parametric methods
(excluding the least squares method) and the MSE averaged over the
nonparametric methods. The left sides of the plots show the ratios
for the additive genetic architecture, and the right sides of the plots
show the ratios for the epistatic genetic architecture. These summary
plots clearly show the advantage of using nonparametric methods
when epistasis is present. In both heritability scenarios, the parametric-
to-nonparametric accuracy ratio is lower for the epistatic genetic
architecture than for the additive genetic architecture. The parametric-
to-nonparametric MSE ratio is higher for the epistatic genetic architec-
ture than for the additive genetic architecture.

Genetic architecture responsible for the genetic contribution to the
phenotypes had the greatest impact on differences of accurate
predictions among the GS methods. If the genetic architecture for
the trait is due to additive-by-additive epistasis among 10 pairs of
independently segregating loci, then parametric GS methods are
unable to predict the phenotypes in the testing sets (shown in Figure
6, Figure 8, Figure 10, and Figure 12). In contrast, nonparametric

n Table 7 Mean and standard error of the mean squared error values for the parametric and the nonparametric methods for
the F2 population with heritability h2 = 0.30

F2, h2 = 0.30, MSE Additive Mean Epistatic Mean Additive SE Epistatic SE

Least squares regression 1.92 2.32 0.20 0.26
Ridge regression 1.11 1.48 0.10 0.13
Bayesian ridge regression 1.11 1.46 0.10 0.13
BLUP 1.11 1.42 0.10 0.12
LASSO 1.11 1.40 0.10 0.12
Bayes LASSO 1.11 1.42 0.11 0.12
Bayes A 1.10 1.47 0.10 0.13
Bayes B 1.10 1.46 0.10 0.13
Bayes C 1.10 1.42 0.10 0.13
Bayes Cp 1.10 1.40 0.10 0.12
Nadaraya-Watson estimator 1.32 1.38 0.12 0.12
RKHS 1.15 1.39 0.10 0.12
Support vector machine 1.16 1.40 0.10 0.13
Neural network 1.14 1.41 0.11 0.12

Mean and standard error of the prediction accuracy values for both the additive and the epistatic cases. The first 10 methods are parametric and the last four are
nonparametric. The calculations are based on 500 replicates.

n Table 6 Mean and standard error of the mean squared error values for the parametric and the nonparametric methods for the F2
population with heritability h2 = 0.70

F2, h2 = 0.70, MSE Additive Mean Epistatic Mean Additive SE Epistatic SE

Least squares regression 3.10 5.10 0.36 0.53
Ridge regression 1.30 3.24 0.12 0.29
Bayesian ridge regression 1.27 3.14 0.13 0.29
BLUP 1.26 3.11 0.12 0.29
LASSO 1.17 3.10 0.11 0.26
Bayes LASSO 1.25 3.10 0.13 0.26
Bayes A 1.25 3.33 0.12 0.30
Bayes B 1.22 3.31 0.11 0.30
Bayes C 1.24 3.16 0.11 0.28
Bayes Cp 1.11 3.11 0.11 0.27
Nadaraya-Watson estimator 2.59 2.91 0.25 0.26
RKHS 1.54 2.76 0.14 0.25
Support vector machine 1.40 2.76 0.14 0.26
Neural network 1.47 3.13 0.15 0.29

Mean and standard error of the prediction accuracy values for both the additive and the epistatic cases. The first 10 methods are parametric and the last four are
nonparametric. The calculations are based on 500 replicates.
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methods, particularly the NWE, the RKHS, and SVM, provided pre-
dictions that are reasonably accurate, especially for traits with higher
heritabilities (shown in Figure 6 and Figure 8). Our results are con-
sistent with the statement by Gianola (2006) that nonparametric
methods should be able to better predict phenotypes that are based
on genetic architectures consisting of epistatic interactions. If the un-
derlying genetic architecture is additive, then parametric GS methods
are slightly better than the nonparametric methods for both levels of
heritability and types of segregating progeny. Both the accuracy of
prediction and the MSE results suggest the same about the models
in terms of predictive performance. When additive effects are present,
the least squares regression performs the worst among the parametric
methods, and the NWE performs the worst among the nonparametric

methods (shown in Figure 5, Figure 7, Figure 9, and Figure 11). When
epistasis is present, the nonparametric NWE, the RKHS, and the SVM
perform significantly better than the parametric methods (shown in
Figure 6, Figure 8, Figure 10, and Figure 12). Among the parametric
methods, the least squares regression has the highest accuracy of pre-
diction values when epistasis is present. However, least squares has the
highest MSE values among the parametric methods as well when
epistasis is present. It suggests that the least squares method estimates
the QTL effects from both loci involved in the epistasis more accu-
rately than the other parametric methods in the F2 population. The
parametric methods other than the least squares are shrinking the
QTL effects too much. Among the nonparametric methods, the NN
showed poor predictive ability when epistasis is present. We know

Figure 6 The boxplots of accuracy of prediction for the F2 population with epistatic genetic architecture and heritability of 0.70. The first 10
boxplots correspond to the parametric methods, and the last four (gray) boxplots correspond to the nonparametric methods.

Figure 5 The boxplots of accuracy of prediction for the F2 population with additive genetic architecture and heritability of 0.70. The first 10
boxplots correspond to the parametric methods, and the last four (gray) boxplots correspond to the nonparametric methods.
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that NN is prone to over-fitting (Lawrence et al. 1997; Smith 1996),
which would affect prediction ability. Most of the results are consis-
tent with the fact that parametric approaches assume that the explan-
atory variables fitted in the model are independent. When we only
simulate additive effects, but not epistasis, the markers are assumed to
be independent. In this case, we satisfy the parametric model assump-
tion of having independent explanatory variables, so the parametric
models have a larger predictive power than the nonparametric models.
However, when we simulate epistasis, the markers are dependent, which
violates the parametric model assumption. Nonparametric models can
handle epistatic models without explicitly modeling the interactions.

Recently, the inability of parametric GS methods to predict has
been observed in experimental data. Parametric GS methods were

unable to predict chill coma recovery, a quantitatively measured
adaptive trait in Drosophila (Trudy F. C. MacKay, personal commu-
nication). Two-dimensional scans of the whole genome had pre-
viously revealed that the genetic architecture of this trait is composed
primarily of interactions involving many loci. Thus, the simulated
architectures used in our study are reasonable for many quantitative
traits.

The clear distinctions of estimated accuracies and MSE values
between parametric and nonparametric methods when underlying
genetic architecture is epistatic suggest that data analyses consisting of
a combination of parametric and nonparametric GS methods could be
used as a diagnostic to reveal the prevalent genetic architecture of the
trait. It is likely that the true underlying genetic architecture consists of

Figure 8 The boxplots of accuracy of prediction for the F2 population with epistatic genetic architecture and heritability of 0.30. The first 10
boxplots correspond to the parametric methods, and the last four (gray) boxplots correspond to the nonparametric methods.

Figure 7 The boxplots of accuracy of prediction for the F2 population with additive genetic architecture and heritability of 0.30. The first 10
boxplots correspond to the parametric methods, and the last four (gray) boxplots correspond to the nonparametric methods.
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mixtures of additive and epistatic genetic effects, so the inferential
limits of applying pairs of GS methods to data from samples of
breeding populations as a diagnostic needs further investigation.
However, the first step is to look at the extremes in terms of genetic
architecture.

Our results also suggest that if the goal of the research is to
accurately predict the genotypic value of an individual, particularly for
purposes of selection, and if the underlying genetic architecture of the
traits are not known, then it is best to use the nonparametric NWE,
the RKHS, or the SVM. Unfortunately, these methods do not provide
interpretable inferences about relative weighting that is being applied
to various regions of the genome, i.e., inferences about specific allelic
contributions to the trait are limited. If the goal is genetic improve-

ment and the underlying genetic architecture is known to be additive,
then parametric GS methods will provide better predictions for selec-
tion. It has previously been hypothesized (Xu et al. 2011) that if all
specific desirable alleles are known, then gene stacking (genome con-
struction) based on optimization approaches will be more effective
and efficient than GS approaches. Thus, in the interest of both im-
mediate and long-term genetic improvement goals, a combination of
data analyses consisting of parametric, nonparametric GS methods as
well as genetic mapping (Guo et al. 2013) should be applied to data
derived from plant breeding populations.

Although heritability did not affect the ability to distinguish among
GS methods, it did affect estimated accuracies. When heritability is
high and genetic architecture is additive, predictions are more accurate

Figure 10 The boxplots of mean squared error for the F2 population with epistatic genetic architecture and heritability of 0.70. The first 10
boxplots correspond to the parametric methods, and the last four (gray) boxplots correspond to the nonparametric methods.

Figure 9 The boxplots of mean squared error for the F2 population with additive genetic architecture and heritability of 0.70. The first 10 boxplots
correspond to the parametric methods, and the last four (gray) boxplots correspond to the nonparametric methods.
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than for low heritability. When genetic architecture is based on
epistasis and the trait exhibits low heritability, predictions are not very
accurate for almost all GS methods. Even when the heritability is 0.70,
the highest mean for prediction accuracy is 0.35, which indicates that
further improvement of the models is necessary. Also, further research
is needed to determine the affects of more complex plant breeding
population structures. Typically, plant breeding population structures
consist of inbred progeny derived from multiple crosses involving
related and unrelated inbreds (Guo and Beavis 2011; Guo et al. 2013).
Thus, GS needs to accurately predict phenotypes not only among
subsets of progeny from related families within generations but also
among generations of related and unrelated families.

In practice, plant breeders do not know the genetic architecture
responsible for quantitative traits and the dynamics of selection for genetic
improvement will tend to favor alleles that contribute to additive
components. Genetic improvement is affected not only by the underlying
genetic architecture but also by additional types of unpredictable genetic
contributions including intra-locus dominance and genotype by environ-
ment interactions. Herein, we have demonstrated the superior ability of
the nonparametric NWE, the RKHS, and the SVMmethods to accurately
predict phenotypes for additive by additive inter-locus interactions. We
hypothesize that nonparametric GS methods also will enable more
accurate predictions of individual genotypic value for traits that are
affected by dominance and genotype by environment interactions.

Figure 12 The boxplots of mean squared error for the F2 population with epistatic genetic architecture and heritability of 0.30. The first 10
boxplots correspond to the parametric methods, and the last four (gray) boxplots correspond to the nonparametric methods.

Figure 11 The boxplots of mean squared error for the F2 population with additive genetic architecture and heritability of 0.30. The first 10
boxplots correspond to the parametric methods, and the last four (gray) boxplots correspond to the nonparametric methods.
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