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ABSTRACT The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting
complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris
hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr.
B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2)
revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as respon-
sible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp)
FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with
all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1
element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genet-
ically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10.
The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across
mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine
hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat
breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element
with Dominant White/blue iris (P , 0.0001) and white spotting (P , 0.0001), respectively.
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The congenitally deaf white cat has long been of interest to biologists
because of the unusual co-occurrence of a specific coat color, iris
pigmentation, and deafness, attracting the attention of Charles Darwin,
among others (Bamber 1933; Bergsma and Brown 1971; Darwin 1859;
Wilson and Kane 1959; Wolff 1942). Multiple reports support the
syndromic association of these phenotypes in the cat as the action
of a single autosomal dominant locus, Dominant White (W), with
pleiotropic effects exhibiting complete penetrance for suppression of
pigmentation in the coat and incomplete penetrance for deafness and
hypopigmentation of the iris (Bergsma and Brown 1971; Geigy et al.
2006; Whiting 1919).
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This phenotypic co-occurrence of deafness and hypopigmentation
has been observed in multiple mammalian species, including the
mouse, dog, mink, horse, rat, Syrian hamster, human (Chabot et al.
1988; Clark et al. 2006; Flottorp and Foss 1979; Haase et al. 2007,
2009; Hilding et al. 1967; Hodgkinson et al. 1998; Hudson and
Ruben 1962; Karlsson et al. 2007; Magdesian et al. 2009; Ruan
et al. 2005; Tsujimura et al. 1991), and alpaca (B. Appleton, per-
sonal communication). In humans, the combination is observed in
Waardenburg syndrome type 2 (W2), which exhibits distinctive
hypopigmentation of skin and hair and is responsible for 5% of
the cases of human congenital sensorineural deafness (Liu et al.
1995). Causal mutations for W2 have been characterized in six
different genes (MITF, EDN3, EDNRB, PAX3, SOX10, and SNAI2)
(Pingault et al. 2010), with most individuals exhibiting mutations
in only one of them.

Pigment cells in all vertebrates, with the exception of pigmented
retinal epithelia, are derived early in embryogenesis from the
neural crest, from which they migrate as melanocyte precursors
(melanoblasts), ultimately to differentiate into melanocytes and to
reside in the skin, hair follicles, inner ear, and parts of the eye
(White and Zon 2008). The eye is largely pigmented by melano-
cytes residing in the iris stroma (Imesch et al. 1997). Genetic
defects impacting the proliferation, survival, migration, or distri-
bution of melanoblasts from the neural crest are readily recogniz-
able in coat hypopigmentation, and thus represent some of the
earliest mapped genetic mutations (Silvers 1979). Research of white
spotting loci in mice has been instrumental in understanding the
molecular genetics underlying melanocyte biogenesis and migra-
tion, identifying many of the genes involved in critical early events
in pigmentation, including Pax3, Mitf, Slug, Ednrb, Edn3, Sox10,
and Kit (Attie et al. 1995; Baynash et al. 1994; Cable et al. 1994;
Epstein et al. 1991; Herbarth et al. 1998; Hodgkinson et al. 1993;
Sanchez-Martin et al. 2002; Southard-Smith et al. 1998; Syrris et al.
1999; Tachibana et al. 1992, 1994). The role that melanocytes play
in hearing is both unique and critical. As the only cell type in the
cochlea to express the KCNJ10 (Kir4.1) potassium channel protein,
they facilitate K+ transport (Marcus et al. 2002), critical in estab-
lishing an endocochlear potential necessary for depolarization and
auditory nerve electrical signal transduction.

The cat displays several distinctive white pigmentation phenotypes
that have been under selection by cat fanciers (Vella et al. 1999): (1)
Dominant White, with uniform white coat, often accompanied by
blue irises and deafness; (2) white spotting (or piebald), with variable
distribution of white areas on the body; and (3) gloving, with white
pigmentation restricted to the paws. Albinism, the complete absence
of pigment, is known to be caused by a distinct locus from White,
called “C” (Whiting 1918). The C locus mutation implicated in albi-
nism has been identified in the tyrosinase (TYR) gene, which codes for
a critical enzyme in melanin synthesis (Imes et al. 2006). Albino cats
have normal hearing; thus, pigment itself is not critical for the hearing
process (Yin et al. 1990).

Whiting (1919) proposed an allelic series at the W locus con-
trolling white pigmentation in the cat, where White is an extreme
of piebald and dominant in the allelic series W (completely white) .
wm (much spotted) . wl (little spotted) . w+ (wild-type). White
spotting has been reported as linked to the KIT locus, and gloving
has been reported as exhibiting a mutation in the KIT locus
(Cooper et al. 2006; Lyons, 2010). We report here data impli-
cating two previously unreported but related mutations in KIT
as causative of feline Dominant White and white spotting,
respectively.

MATERIALS AND METHODS

Animals
A domestic cat Dominant White pedigree was maintained for ap-
proximately 20 years at The Johns Hopkins University to research the
physical basis of sensorineural deafness in these animals (Morgan et al.
1994; Saada et al. 1996; Ryugo et al. 2003, 1997, 1998) (Pedigree 1 in
Figure 1). The white spotting phenotype was also observed at low
frequency in more recent generations of the pedigree. Archival samples
of genomic DNA from this pedigree were utilized in the analysis.

A second pedigree (P2) segregating for White and sharing one
individual with Pedigree 1 was generated at The Johns Hopkins Uni-
versity for mapping of the W locus (Figure 1). The progenitor of the
pedigree, a white male (07-063), was generated to be heterozygous at
W by mating a white, deaf male (04-065) with a fully pigmented (no
white markings) female (07-005) (Liberty Laboratories) with normal
hearing (Figure 1). The heterozygous (W/+) male was bred to four
fully pigmented females (Liberty Laboratories) to produce 29 off-
spring, which included 10 pigmented and 19 white individuals. A
small kindred from a pedigree of cats reported in an earlier study
(Eizirik et al. 2003) was utilized to examine the segregation of white
spotting. Genomic DNA from laboratory stocks of the Laboratory of
Genomic Diversity was utilized in the study. All animal procedures
were conducted in accordance with guidelines established by the NIH
and the approval of the Animal Care and Use Committee of The
Johns Hopkins University School of Medicine. When necessary, cats
were humanely killed as previously described (Ryugo et al. 2003) and
in accordance with the Institutional Animal Care and Use Committee
protocols approved at The Johns Hopkins University (#CA10M273).

Population sample of cat breeds
Genomic DNA extracted from whole blood or buccal swab samples
from a previous study of cat breeds (Menotti-Raymond et al. 2007)
was utilized in a population genetic survey of White and white
spotting. The sample set of 270 individuals included 33 Dominant
White cats, 94 cats exhibiting white spotting (i.e., either exhibiting
white paws or bearing white on additional parts of the body), and
143 fully pigmented cats. The sample set represents individuals
from 33 cat breeds, including 12 of 21 breeds that allow Dominant
White and 16 of 22 breeds that allow white spotting in their breed
standards (Cat Fanciers’ Association; http://www.cfa.org/client/
breeds.aspx).

Phenotypes were provided by the owner or from direct observation
by MM-R. All cats were assigned a registry (FCA) number, and
phenotypic data were recorded in a database at the LGD to preserve
the anonymity of individual cats and their owners.

Genomic DNA extraction
Genomic DNA was extracted from whole blood or tissue using the
QIAamp DNA Mini Kit (Qiagen). DNA was quantified using the
NanoDrop 1000 spectrophotometer (Thermo Scientific).

Marker development and genotyping
STR selection: Primers were designed for amplification of short
tandem repeat (STRs) loci selected from the domestic cat genome
browser (GARField; http://lgd.abcc.ncifcrf.gov/cgi-bin/gbrowse/cat/)
(Pontius and O’Brien 2007) that were tightly linked to eight candidate
genes (Supporting Information, Table S1), whose orthologs had pre-
viously been implicated in a Dominant White phenotype or white-
associated deafness.
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Amplification and genotyping of STR loci: PCR amplification was
performed with a touchdown PCR protocol as described previously
(Menotti-Raymond et al. 2005). PCR products were fluorescently la-
beled using a three-primer approach (Boutin-Ganache et al. 2001),
and sample electrophoresis was performed as described previously
(Ishida et al. 2006). Genotyping was performed using the software
package Gene Marker (Soft Genetics, version 1.85). Inheritance pat-
terns consistent with expectations of Mendelian inheritance were
checked as described previously (Ishida et al. 2006).

Genetic linkage analysis

Genetic linkage analysis for W: To identify theW locus, single-marker
LOD scores were computed using SUPERLINK (Fishelson and Geiger
2002; Fishelson and Geiger 2004) (http://bioinfo.cs.technion.ac.il/
superlink-online/). We modeled W as a fully penetrant, autosomal
dominant trait with a disease allele frequency of 0.001. Marker
allele frequencies were equal. A logarithm of odds (LOD) score
was calculated for each of the markers (Table 1, Table S2).

Linkage and association testing for deafness: In this analysis, the two
pedigrees in Figure 1 were combined into one because they share an
individual. To test whether the KIT FERV1 variation (see Results),
encoded as a triallelic marker (W, ws, w+), is genetically linked to
deafness, we also used SUPERLINK (Fishelson and Geiger 2002,
2004). Deaf (D) and partially hearing (PH) individuals were assigned
the status “affected”, which by convention is encoded as 2. A range of

frequencies (0.001 to 0.05) for the deafness-predisposing allele was
tested. We started with an empirically derived penetrance function of
0.00, 0.25, and 0.75, and varied the second number in the range (0.15,
0.35) and the third number in the range (0.30, 0.80) to test the robust-
ness of the LOD scores to misestimation of the parameter values.

To test for association between deafness and the KIT variants, we
used MQLS (Thornton and McPeek 2007) because it tests for associ-
ation while controlling for known pedigree relationships. MQLS
requires as part of the input pairwise kinship coefficients and inbreed-
ing coefficients. These coefficients were computed with PedHunter
(Agarwala et al. 1998) after modifying the kinship and inbreeding
programs of PedHunter to produce their output in the format required
by MQLS. The MQLS program also requires as input a prevalence
(of deafness), which we varied from 0.001 to 0.05 to test the robustness

Figure 1 Graphic depiction of JHU Pedigree. Pedigree 1 (PI) illustrates matings of white to white cats in the JHU archival colony. Pedigree 2
illustrates pedigree developed to map the W locus that is segregating for White coat color. Phenotype of individuals is indicated by color symbol
and outline. White symbols denote individuals with a white coat; gray, fully pigmented individuals; half and half symbols (gray/white), white
spotted individuals). Hearing capacity is indicated by color outline of the symbol: red outline, deaf; blue, partial hearing; green, normal hearing;
black, unknown. Genotypes are depicted below symbol: W,White allele (W, insert of solo LTR; ws,White Spotting allele (insert of full-length FERV
element); w, wild-type (no insertion).

n Table 1 Linkage mapping of the domestic cat WHITE locus

Markera LODb ub
Position in Santa Cruz

Browser (start, Chr.: Mb)c

KIT-A 6.32 0 B1:161.77
KIT-B 6.32 0 B1:161.68
KIT-C 6.02 0 B1:161.64
a

Markers are shown in genomic order along the domestic cat chromosome B1
on the basis of the most recent genetic linkage and radiation hybrid maps and
cat genome assembly.

b
Logarithm of odds (LOD) score and recombination fraction (u) for linkage
between each polymorphic marker and the WHITE locus.

c
Position in the domestic cat whole genome sequence, UCSC browser,
September 2011 (ICGSC Felis_catus 6.2/felcat5) Assembly.
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of the results. We used MQLS option 2, which ignores the individuals
of unknown phenotype in estimating parameters. Combined linkage
and association analysis was performed with PSEUDOMARKER
(Hiekkalinna et al. 2011) with the empirical model.

Amplification and sequencing of KIT exons and 59
region of intron 1
Primers for PCR amplification were designed in intronic regions
flanking the 21 exons of KIT to include splice junction sites and also in
the 59 region of intron 1 using the GARfield cat genome browser (Table
S3). The exons and the 59 region of intron 1 of KIT were amplified
using a touchdown procedure and sequenced as described previously
(Table S5) (Ishida et al. 2006).

Amplification and genotyping assays developed for
FERV1 LTR and full-length FERV1 element

FERV1 LTR (Dominant White) amplification: Primers tagged with
M13 tails were designed within genomic regions flanking the FERV1
LTR insertion site in KIT intron 1 (TGTAAAACGACGGCCAGTCACC
CAGCGCGTTA (7FM13F); CAGGAAACAGCTATGACCCAAATC
CTCCTCCTCCACCT (7RM13R). Fragments were amplified using
a TaKaRa LA Taq kit (TaKaRa; CloneTech) using GC BufferII following
the manufacturer’s suggestion. PCR conditions utilized were as follows:
94� for 1 min followed by 30 cycles of 94� for 1 min, and 57� for 2 min
30 sec, followed by an extension at 72� for 10 min. PCR reaction results
were visualized for presence/absence of products by electrophoresis in
a 1% agarose gel and, to verify the presence of the FERV1 LTR insertion,
by subsequent DNA sequence analysis of amplification products.

Full-length FERV1 (white spotting allele) amplification: The full-
length FERV1 insertion causative of white spotting was amplified using
PCR primers designed within genomic regions flanking the FERV1 LTR
insertion site in KIT intron 1. Primers were M13-tailed and designed to
anneal at 65�: (KIT_65C_F_M13F): TGTAAAACGACGGCCAG
TATTTTGAGATCTGCAACACCCCTTC; (KIT_65C_R_M13R): CA
GGAAACAGCTATGACCTCCTCCACCTTCAGACCTAAGTTCC.
PCR conditions were as described above using TaKaRa LA, except that
Buffer I and an annealing/extension temperature of 63� for 7 min were
used. Individuals carrying the white spotting allele demonstrated a PCR
product band in excess of 7 Kbp, as detected by gel electrophoresis.

Three-primer genotyping assay designed for White (FERV1 LTR),
white spotting (full-length FERV1 element), and wild-type alleles:
A genotyping assay was developed to distinguish the wild-type, Dom-
inant White, and white spotting alleles in a single PCR reaction. The
reaction contained three primers, two in genomic regions flanking the
full-length FERV1/FERV1 LTR element and a third located within the
full-length FERV1 element. The primers and expected product sizes
are presented in Table S7. PCR amplification was performed with
TaKaRa LA as described above except that the annealing/extension
temperature was 63� for 2.5 min using Buffer I. Products were visu-
alized on a 2% agarose gel.

Identification of the LTR repeat type
After identifying an LTR in white cats, the cat genome (September
2011 ICGSC Felis_catus 6.2 assembly) (GenBank Assembly ID:
GCA_000181335.2) was interrogated for sequences homologous to
the LTR using BLAT (Kent 2002) at the UCSC genome browser
(http://genome.ucsc.edu/). There were 102 highly homologous sequences

with BLAT scores .1000. The top hit was on chromosome D1-
116687546.0.116694444, which demonstrated 98.4% identity over
a span of 6333 bp. RepeatMasker (Smit et al. 2010) identified the
repeat element as being part of an endogenous retrovirus (ERV) Class
I repeat. The top hit was to ERV1-1_FCa-I (Anai et al. 2012; A.F.A.
Smit, R. Hubley, and P. Green, unpublished data) (current version:
open-4.0.0; RMLib: 20120418 & Dfam: 1.1).

Sequence analysis of full-length FERV1
To sequence the .7-kbp product, sequencing primers were designed
from the previously published FERV1 sequence (Yuhki et al. 2008)
(Table S6) and sequenced using standard ABI Big Dye sequencing
with 99 cycles of amplification using the primers in Table S6 and the
65F and 65R primers.

RNA extraction and generation of cDNA
RNA was extracted from skin cells of white and pigmented cats using
the RNAqueous-4 PCR kit (Ambion). Reverse-transcriptase PCR
(RT-PCR) was performed with the SuperScript III One-Step RT-PCR
kit (Invitrogen) to generate an amplified cDNA product. RT-PCR
products were visualized on 2% agarose gels and sequenced as
described above. The PCR primers used for amplification of the KIT
cDNA are listed in Table S4. Complementary DNA (cDNA) sequences
were aligned in Sequencher version 4.8 (Gene Codes Corp.).

Hearing threshold tests
Hearing thresholds were determined using standard auditory evoked
brainstem response (ABR) techniques in a soundproofed chamber, as
described previously (Ryugo et al. 2003). Each kitten was tested at 30 d
and at 30-d intervals to track the animals’ hearing status over time.
For 32 pigmented hearing cats and 44 white cats with varying degrees
of hearing loss, repeated threshold measures for individuals varied less
than 10 dB from month to month. The final ABR threshold measure-
ments just before euthanasia for both ears were reported (Table S8)
because this was the endpoint hearing status of the animals. All pro-
cedures were conducted in accordance with NIH guidelines and ap-
proved by The Johns Hopkins University Animal Care and Use
Committee (ACUC) (Protocol #CA10M273).

Case-control analysis
For the population sample case-control analysis, the white cat
phenotypes were dichotomized so that we could investigate the effect
that each genotype had on the likelihood of a white cat phenotype.
White cat phenotypes included coat color (colored, dominant white,
or white spotted), blue iris color, and hearing capacity. The data were
arranged in two-by-two tables (Table S11). The parameter of interest
was the odds ratio measuring association between genotype and phe-
notype. Exact nonparametric inference was used to test the null hy-
pothesis that the odds ratio equaled 1, i.e., no association between
genotype and phenotype. The software used to perform these analyses
was the FREQ procedure in SAS (SAS Institute, 2008). The Ragdoll
breed was not included in the statistical analysis examining a potential
correlation between blue iris and genotype at the W locus as all
Ragdolls have blue eyes due to their genotype at the “C” or TYR locus,
which results in decreased levels of the enzyme tyrosinase (Lyons et al.
2005b; Schmidt-Küntzel et al. 2005).

Hematopoietic and mast cell analysis
Hematopoietic profiles of two pigmented and two white deaf cats were
generated by Antech Diagnostics (Table S11).
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Tissues used in this study for mast cell analysis were collected after
postmortem perfusion with 4% paraformaldehyde. To compare mast
cell number and general histopathological differences between white
(n = 2) and pigmented cats (n = 2), fixed tissues were embedded in
paraffin blocks, sectioned, mounted, and stained either with hema-
toxylin and eosin (H & E) stain for all tissues or toluene blue when
appropriate for mast cell visualization (Histoserv, Inc.) (Table S11).

RESULTS
The characterization of the felineWhite locus has been complicated by
the lack of complete concordance of a white coat with blue irises and
deafness (Geigy et al. 2006). Of the three phenotypes, only white coat
color exhibits complete penetrance (Figure 1). Thus, we reasoned that
mapping W using the segregation of white coat color would be a
straightforward approach to identify the W locus in the domestic cat.

A candidate gene approach was utilized to map the W locus in the
two-part pedigree described above. Significant linkage toW was estab-
lished with three STRs tightly linked to the feline KIT locus on chro-
mosome B1 (u=0, LOD= 6.0–6.3) (Table 1). Negative LOD scores
were observed for all STRs linked to the seven other candidate genes.
For five of these candidate loci, LOD scores of 22 or less were ob-
served, which are considered exclusionary (Ott 1991) (Table S2).

Sequence generated from the 21 exons of KIT and splice junction
regions displayed no fixed polymorphisms that distinguished between
white and nonwhite individuals. Additionally, sequence of cDNA
generated from RNA isolated from skin exhibited no splicing abnor-
malities (Table S4). We next examined regions reported to impact
regulation of KIT. Transcriptional regulation of KIT is highly complex
and exhibits tissue specificity (Berrozpe et al. 2006; Mithraprabhu and
Loveland 2009; Vandenbark et al. 1996). We identified a 623-bp in-
sertion in KIT intron 1 interrupting the feline region homologous to
the murine Kit DNase hypersensitive site 2 (HS2) (Figure 2), which is
highly conserved across mammalian species and has been character-
ized in the mouse as having tissue and temporal-specific regulatory
function in hematopoietic, melanocytic, and embryonic stem cells
(Cairns et al. 2003; Cerisoli et al. 2009).

The insertion identified in intron 1 consisted of an element that
demonstrated the highest level of identity to a feline endogenous

retrovirus 1 (FERV1) family member recently identified in the cat
genome, which exhibits similarity to a porcine endogenous retroviral
family (Pontius et al. 2007; Yuhki et al. 2008). The inserted fragment
comprised an incomplete viral sequence including the long terminal
repeat (LTR) with a series of seven repeated sequence blocks 46-bp
long. Figure S1 presents a sequence alignment of the feline KIT wild-
type intron 1 with the LTR (henceforth the W allele), illustrating
insertion breakpoints of the LTR element (GenBank id KC893343).

Primers designed in sequences flanking the W allele demonstrated
that W segregated with white in Pedigree 2 (P2) (Figure 1) (P =
0.00014) and was observed in all white individuals of Pedigree 1
(P1) (Figure 1), with many of them demonstrating homozygosity
for W (Table S8).

Three white spotted individuals in Pedigree 1 (03-138, 04-053,
04-054) (Figure 1) exhibited “null” alleles for a W genotyping assay,
demonstrating neither the presence of the W allele nor the wild-type
(w) allele (Figure 3). Analysis of short tandem repeat profiles (Menotti-
Raymond et al. 1997) confirmed their parentage (data not shown).
Because their parents appeared to be homozygous for the LTR inser-
tion, these spotted individuals posed contradictions of both phenotypic
and genotypic expectations. Ultimately, utilizing long-range PCR
methodology, we generated a 7333-bp PCR product from the three
white spotted individuals spanning the site of the W allele and iden-
tified a full-length 7125 bp feline endogenous retroviral sequence.
The sequence exhibited highest similarity to the FERV1 element
ERV1-1_FCa-I (Anai et al. 2012) on chromosome D1, demonstrating
98.4% identity over a span of 6333 bp (Figure S1) (GenBank submis-
sion no. KC893344). The full-length FERV1 insertion element dem-
onstrated identical sequence identity to the LTR insertion of the
W allele (Figure S1).

The full-length FERV1 element, henceforth white spotting allele, ws

(Figure 3), demonstrated segregation with the white spotting pheno-
type (Figure 1), both in Pedigree 1 and an independent pedigree
(Figure 4), as well as exhibiting recessiveness to the W allele, and
dominance to the wild-type allele, White (W) . white spotting (ws) .
wild-type (w+) (Table 2). Different degrees of white pigmentation were
demonstrated by three progeny (Figure 4) that inherited the identical
maternal white spotting allele.

Figure 2 Graphic depiction of feline Chromosome B1 (161.71 Mb-161.62 Mb) (UCSC Genome Browser, September 2011; ICGSC Felis_catus
6.2/felCat5) Assembly. Genomic region of KIT intron1 homologous to murine DNAse hypersensitive site 2 (1) requisite for high-level expression of
Kit. Genomic conservation of the region is demonstrated across six mammalian species.
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We determined that deafness is genetically linked to the triallelic
KIT variant, which quantifies the qualitative observation that all deaf
cats carry at least one W allele. Distinguishing the two non-W alleles
adds informativeness to the marker and hence increases statistical
power. For the initial penetrance function and a disease allele fre-
quency of 0.01, the LOD score is +2.67. Varying the model parameter
values (see Materials and Methods) caused the LOD score to vary in
the range of +2.42 to +2.83. Because linkage was tested to only one
marker, these LOD scores are significant at P , 0.0038 for the lowest
score of +2.42 and P , 0.0015 for the highest score of +2.83 (Ott
1991). The correction for genome-wide multiple testing implicit in the
typically used LOD score thresholds of +3.0 or +3.3 is not applicable
in this usage of genetic linkage analysis. Deafness is statistically asso-
ciated with the genotype of the KIT variant in the combined pedigrees
1 and 2. MQLS estimated P values in the range of 0.007 to 0.010,
varying with the input prevalence of deafness and with the method of
P value estimation. For the combined hypothesis of linkage and asso-
ciation, PSEUDOMARKER reported a P value of 0.000023.

There appears to be an influence of homozygosity at W relative to
hearing capacity. In Pedigree 1, all W/W homozygotes (n = 22) dem-
onstrated some degree of hearing impairment: 73% were deaf and 27%
demonstrated partial hearing (Table S8, Table 3). In contrast, individ-
uals that were heterozygous (W/w+) (n= 24) were much more likely to
display some hearing capacity: 58% demonstrated normal hearing,
16.7% had partial hearing, and 20.8% were deaf (Table S8). All
wild-type individuals demonstrated normal hearing. In individuals
exhibiting the white spotting allele, although sample sizes are small,
ws/ws homozygotes (n = 3) demonstrated normal hearing and W/ws

heterozygotes (n = 6) were equally divided (33%) into hearing, deaf, or
hearing impaired (Table S8). There were no ws/w+ individuals in the
pedigree (Table 3).

We examined the correlation of theW and ws alleles with coat and
iris color in a population genetic survey of cats of registered breed (n=
270), including 33 Dominant White cats, 94 white spotted individuals,
and 143 fully pigmented cats (Menotti-Raymond et al. 2007) (Table 4,
Table S9). All Dominant White individuals demonstrated the presence
of the W allele, with six individuals demonstrating homozygosity for
W (P , 0.0001). With the exception of one individual, all individuals
demonstrating white spotting exhibited the ws allele (P , 0.0001). All
but three of the fully pigmented individuals exhibited absence of either
the W or ws allele (Table S9, Table 4) (P , 0.0001). Two of these
individuals were from a near-hairless breed (Sphynx) in which
white pigmentation is difficult to phenotype, often appearing pink
(S. Pfluger, The International Cat Association cat breed judge, per-
sonal communication). We had no phenotypic information for hear-
ing status in the population sample, except that the one cat that was
homozygous for W was reported as both blue-eyed and deaf.

In the population sample, we were also able to examine the
correlation between genotype at the W locus and iris color (Table
S11). An individual that is homozygous W is much more likely to
have blue iris, exhibiting odds 77.25-times larger than the odds of
having blue irises of a genotype other than W/W (P , 0.0001). An
individual that is heterozygous (W/w+) also demonstrates increased
odds of having blue iris (OR = 4.667): four-times larger than the odds
of having blue irises of a genotype other than W/w+ (P = 0.046). The
odds of having blue irises in a wild-type individual is 0 (Table S11).

Figure 3 Graphic depiction of
retrotransposition of FERV full
element and LTR into feline KIT
intron 1 in White Spotted and
White Dominant individuals; W,
White allele; ws, White Spotted
allele; w+, wild-type allele.

Figure 4 Family of domestic
cats segregating White Spotting
demonstrating difference in de-
gree of White Spotting in individ-
uals inheriting ws allele identical
by descent. Squares = males;
circles = females. Filled symbols,
White Spotted individuals; open
symbols, fully pigmented cat. ws,
full-length FERV element in KIT;
w+, wild-type allele.
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In humans, mutation of KIT is causative of a heterogeneous
disorder, mastocytosis, which exhibits proliferation and accumu-
lation of mast cells in the skin, bone marrow, and internal organs
such as the liver, spleen, and lymph nodes (Orfao et al. 2007). A
survey for mast cell profiles in tissues of white (n = 2) and pigmented
cats (n = 2) revealed no substantive differences in mast cell distribution
(Table S10).

DISCUSSION
KIT encodes the mast/stem cell growth factor tyrosine kinase receptor.
The heterozygous W mouse phenotype is similar to the human pie-
bald trait, also caused by a KIT mutation, which is characterized by
a congenital white hair forelock and ventral and extremity depigmen-
tation (Fleischman et al. 1991). Mutations in coding or regulation of
KIT have been characterized in additional species as causative of
defects in pigmentation and hearing (Haase et al. 2007; Ruan et al.
2005; Spritz and Beighton 1998). Cable et al. (1995) have demon-
strated that mutations in Kit do not prevent early melanoblast migra-
tion or differentiation in mice white spotting mutants but severely
affect melanoblast survival during embryonic development.

Cairns et al. (2003) described murine cell type–specific DNase I
hypersensitive sites that delineated Kit regulatory regions in primor-
dial germ cells, hematopoietic stem cells, and melanoblasts. Genomic
regions defined by the hypersensitive sites, once engineered into trans-
genic constructs driving green fluorescent protein (GFP) expression,
demonstrated expression of GFP in vitro and in vivo through devel-
opment of hematopoietic and germ cell lineages (Cerisoli et al. 2009).
The W and ws alleles map within the 3.5-Kb DNase 1-hypersensitive
site 2 (HS2) fragment, required for high-level expression of Kit (Figure
2) (Cairns et al. 2003). This genomic region is evolutionarily conserved
across a range of mammals (Figure 2), suggesting that it is under
selective constraint. We suggest that disruption of this regulatory re-
gion in the cat impacts melanocyte survival and/or migration.

Similar to other mammalian species, cats carry endogenous ret-
roviral (ERV) genomic sequences descended from ancestral infections
and integrations into the germ line. Approximately 4% of the as-
sembled feline genome consists of sequence segments that are
retroviral-like with the FERV1 family comprising approximately
1.05% of the genome (Pontius et al. 2007). The FERV1 integration site
in KIT is unusual relative to the pattern of ERV insertions in the
human genome, which are generally found in intergenic regions and
rarely within an intron or in close proximity of a gene (Medstrand
et al. 2002). It is clear from the data (Figure S1) that there was a single

episode of insertion. We would envision the integration of the full-
length retroelement, the white spotting allele (ws), followed at some
point by recombination between the two LTRs of the integrated pro-
virus, generating a single LTR, the W allele. LTR insertions are found
for many classes of endogenous retroviruses and outnumber their full-
length ancestral progenitors (Jern and Coffin 2008).

Retroviral insertions can be powerful agents for phenotypic change
and are reported to impact a host of genetic mechanisms that can
impact phenotype, including gene expression, splicing, and premature
polyadenylation of adjacent genes (Jern and Coffin 2008; Boeke and
Stoye 1997; Rosenberg and Jolicoeur 1997). Other retroviral insertion
events have been reported to impact pigmentation (Clark et al. 2006;
Jenkins et al. 1981), and there is report of a retroviral insertion that
can affect transcriptional regulation of several unlinked loci (Natsoulis
et al. 1991).

Why the full-length retroviral element (ws) results in a less extreme
phenotype (white spotting) than the LTR (W) element is open for
speculation. In the full-length element, a large 4908-bp open reading
frame persists that corresponds to the Gag-Pol precursor protein of
feline ERV DC-8 of the ERV1-1 family (Anai et al. 2012). However,
presence of three stop codons precludes potential translation of a com-
plete Gag-Pol polyprotein.

White cats with blue eyes represent the classic model of feline
deafness. The inner ears of such cats exhibit degeneration of the
cochlea and saccule, termed cochlea-saccule degeneration (Mair 1973).
The cochleae of white kittens do not appear different from those of

n Table 2 Genotype at White locus as associated with phenotype

Genotype Phenotype/Observed Penetrance

Allelea: (Insertion element) Coat pigmentf Deafness Iris colorg

W/W: (LTR/LTRb) White (CP) Deaf (IP) Blue (IP)
W/w+: (LTR/no ins.) White (CP) Deaf (IP) Blue, fully pigmentedg

W/ws: (LTR/FLd) White (CP) Deaf (IP) No datah

ws/ws: (FL/FL) White spotted (CP) Normal (CP) No datah

ws/w+: (FL/no ins)e White spotted (CP) Normal (CP) No datah

w+/w+: (no ins./no ins.) Fully pigmented Normal Fully pigmented
a

W, White allele; ws, white spotting allele; w+, wild-type allele.
b

LTR: insertion of long terminal repeat of FERV1.
c

w+: wild-type, no insertion.
d

FL, insertion of full-length FERV1 element.
e

Based on observations in population survey, Table S9, and small pedigree observed in Figure 4.
f

CP, completely penetrant; IP, incomplete penetrance.
g

Fully pigmented iris range from copper to hazel and green (Vella et al. 1999).
h

We have no phenotype for individuals with this genotype.

n Table 3 Genotype observed with respect to hearing capacity at
the White locus, as observed in Pedigrees 1 and 2

Phenotypea

Genotype at Wa Deaf
Partial
Hearing

Normal
Hearing

W/W 16 6 0

W/w+ 6 5 14

w+/w+ 0 0 15

W/ws 2 2 2

ws/ws 0 0 3
a

W,White allele; w+, wild-type allele; ws, white spotting allele. See Table S8 for
hearing thresholds of individual animals that were used to assign phenotype.
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normal pigmented kittens at birth, with inner and outer hair cells
intact in both groups. Within the first postnatal week, the cochleae
of white kittens manifest degenerative changes, characterized by
a pronounced atrophy of the stria vascularis and incipient collapse
of Reissner’s membrane (Baker et al. 2010; Mair 1973). By the start
of the second postnatal week, the tectorial membrane and the sensory
receptor cells have been obliterated. Perhaps the most economical in-
terpretation of the available evidence is that these latter events are
secondary to some primary event involving the KIT mutation and
melanocytes.

White cats lack melanocytes in the inner ear (Billingham and
Silvers 1960). In contrast, albino cats, which have a normal distribu-
tion of melanocytes, are not deaf. Standard cochlear histology may be
inadequate to identify the pathology that presumably already exists in
the stria vascularis. While clear structural abnormalities are not evi-
dent in the cochleae of newborn kittens destined to become deaf,
the central axon terminations of spiral ganglion neurons exhibit

pathology: the endings are smaller, membrane appositions are shorter
and less complex, and the number of synapses is reduced by 50%
(Baker et al. 2010). It remains to be determined whether the pathologic
changes in spiral ganglion cells represent a primary or secondary
consequence to the genetic deafness.

We observed that homozygous (W/W) individuals were more
likely than heterozygotes to be deaf (Table 4) and to have blue
irises (Table S11). A report in the literature provides compelling
evidence addressing the reduced incidence of deafness in W/+
individuals. Aoki et al. (2009) report that melanocytes derive from
two distinct lineages with different sensitivity to Kit signaling.
“Classical” murine melanocytes that migrate from the neural crest
along a dorsal-lateral route to pigment skin and hair are highly KIT-
sensitive. However, noncutaneous melanocytes, which travel a dorsal-
ventral route to the inner ear and the iris, are less sensitive to KIT
signaling, likely a consequence of lower KIT cell surface–receptor
density, and are more effectively stimulated by endothelin 3 (EDN3)
or hepatocyte growth factor (HGF) than by KIT (Aoki et al. 2009).
We propose that suppression or availability of KIT may be less
severe in heterozygous individuals, allowing for modest survival
and migration of noncutaneous melanocytes to the inner ear and
iris. While this may explain some of the perceived lack of penetrance
for deafness and blue iris coloration at the W locus, we have not
observed a complete correlation between genotype for the FERV1
insertion and phenotype, suggestive of additional genetic modifying
factors.

White spotting in the cat is observed as a continuum of white
pigmentation from low-grade (face/paws/legs/white stomach) to
medium-grade spotting covering 40% to 60% of the body to high-

n Table 4 Summary of genotypes at the W locus in a population
survey of 30 cat breeds

Genotype at the White Locusa

W/W W/w+ ws/ws ws/w+ w+/w+

Coat color phenotype
Dominant White 6 27 0 0 0
White Spotting 0 0 40 53 1
Fully pigmented 0 0 2 1 140
Total individuals 6 27 42 54 141
a

W, White allele; ws, white spotting allele; w+, wild-type allele.

Figure 5 Graphic illustration of common pigmentation
patterns in the cat.
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grade spotting (van pattern), with most of the body other than the
head and tail being white (Vella et al. 1999) (Figure 5). Homozygosity
vs. heterozygosity for the ws allele appears to have an influence on the
degree of white pigmentation. In our population survey of two cat
breeds that demonstrate a high degree of white spotting (Turkish Van,
Japanese Bobtail) (Fogle 2001), 13 of 16 individuals demonstrated
(ws/ws) genotypes (Table S9). By breed definition, a Turkish Van
may have color on, at most, 15% of its body (http://www.cfainc.org/).
Other genetic modifiers appear to influence melanoblast survival and
migration as observed by the different degrees of white pigmentation
in siblings that inherited the identical ws allele (Figure 4). None of the
individuals of the Birman cat breed, which all exhibit white pigmen-
tation of the paws, demonstrated the ws allele, supporting a recent
report of Lyons (2010) of an independent mutation in KIT causative of
Birman gloving.

The KIT insertion event is likely of relatively recent origin, as
demonstrated by the fact that the LTR element exhibits complete
sequence identity between theWhite and white spotting alleles. The cat
was domesticated from the Near Eastern wildcat, Felis sylvestris lybica
(Driscoll et al. 2007). Similar to other species that have experienced
domestication, multiple coat color and hair phenotypes rapidly arose
in the cat (Drogemuller et al. 2007; Eizirik et al. 2010, 2003; Ishida
et al. 2006; Kehler et al. 2007; Lyons et al. 2005a,b; Menotti-Raymond
et al. 2009; Schmidt-Küntzel et al. 2005; Kaelin et al. 2012), likely as
the consequence of selection by humans of desirable phenotypes
(Cieslak et al. 2011). A white cat, or white spotted cat (females can
be calico), would likely have been a prized possession. Our population
genetic data suggest that the white spotting and Dominant White
phenotypes demonstrate the remarkable impact on phenotype at
W by retroviral insertion and evolution, respectively. An allelic series
of mutations in KIT has also been observed in the pig for several
hypopigmentation phenotypes (Giuffra et al. 1999; Johansson et al.
2005; Pielberg and Olsson 2002) and is proposed in the horse (Haase
et al. 2007).

The possibility that the alleles we defined here are not causal
illustrates an ongoing issue in disease gene identification by linkage
and association analysis, i.e., that a mapped locus will be tracking
another causal mutation by linkage disequilibrium, particularly in
an inbred cat. If there is an undiscovered causal variant for one or
the other phenotype, then there are a few predictions we can assess. If
White and white spotting mutations occurred after the FERV-kit and
LTR-kit insertions, then FERV and LTR elements should today occur
in both fully pigmented and white/white spotted individuals, and this
is not the case given the presently available data set. If the White and
white spottingmutations occurred before FERV-kit and LTR-kit inser-
tions, then that would presuppose a FERV-kit insertion on one hap-
lotype and a LTR-kit insertion on another haplotype, both at the
identical position, which is quite unlikely. Also, in the latter scenario,
one might expect some white or white spotted individuals without
LTR and FERV insertion elements, but none has been observed. There-
fore, given the present data and a comprehensive assessment of their
potential historical processes that could have led to the observed
patterns, the most plausible explanation is a causal relationship
between the FERV1-related variants and the White/white spotted
phenotypes.
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