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ABSTRACT Admixture mapping is a popular tool to identify regions of the genome associated with traits in
a recently admixed population. Existing methods have been developed primarily for identification of
a single locus influencing a dichotomous trait within a case-control study design. We propose a generalized
admixture mapping (GLEAM) approach, a flexible and powerful regression method for both quantitative
and qualitative traits, which is able to test for association between the trait and local ancestries in multiple
loci simultaneously and adjust for covariates. The new method is based on the generalized linear model and
uses a quadratic normal moment prior to incorporate admixture prior information. Through simulation, we
demonstrate that GLEAM achieves lower type I error rate and higher power than ANCESTRYMAP both for
qualitative traits and more significantly for quantitative traits. We applied GLEAM to genome-wide SNP
data from the Illumina African American panel derived from a cohort of black women participating in the
Healthy Pregnancy, Healthy Baby study and identified a locus on chromosome 2 associated with the
averaged maternal mean arterial pressure during 24 to 28 weeks of pregnancy.
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Admixture mapping, also known as mapping by admixture linkage
disequilibrium, has become an important tool for localizing disease
genes. A number of admixture mapping studies have successfully iden-
tified candidate loci associated with common complex traits and bio-
markers (Reich et al. 2005; Zhu et al. 2005; Freedman et al. 2006; Kao
et al. 2008; Yang et al. 2011).

As a genome-wide association approach, admixture mapping aims
to identify susceptibility loci, which confer risk or are linked with other
loci harboring risk variants, for complex-traits that have different
prevalences between ancestral populations (McKeigue 2005; Winkler
et al. 2010). In recently admixed populations, such as African Amer-
icans or Hispanic Americans, the chromosome resembles a mosaic of
ancestry blocks, with alleles inherited together from one ancestral pop-
ulation within each block. The ancestral populations have different
risks for the trait, which is assumed to be due in part to frequency
differences in risk variants. The block containing the risk variant is

more likely to have originated from the high-risk ancestral population
than the low-risk ancestral population. Hence, detecting the association
between ancestry block and trait helps us to localize the susceptibility
loci.

The ancestral status of a block at a specific genomic region, or local
ancestry, is unobserved and can be estimated based on ancestry
informative markers (AIMs), such as single-nucleotide polymor-
phisms (SNPs), which vary in frequency across ancestral populations.
AIMs tag the status of an ancestry block, similar to that of tagSNPs,
which are used to characterize common haplotypes in a chromosomal
region. In the African-American population, the linkage disequilibrium
due to admixture extends for a much wider region than the linkage
disequilibrium between haplotypes (Smith et al. 2004; Patterson et al.
2004). Hence, compared with the tagSNP-based genome-wide associ-
ation study, admixture mapping requires many fewer markers to tag
the whole genome and therefore increases the detection power at a re-
duced resolution, which is still greater than linkage analysis (Patterson
et al. 2004; Smith and O’Brien 2005). Moreover, admixture mapping is
less vulnerable to allelic heterogeneity because it relies on local ancestry
instead of alleles directly.

Given the local ancestries of each individual, several hypothesis
testing-based approaches have been proposed to test, one locus at
a time, the null hypothesis that the AIM is unlinked to the complex-
trait/disease for a dichotomous trait within a case-control study
design. McKeigue (1998) proposed a test for gametic disequilibrium
between an AIM locus and the trait locus, conditional on the parental
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admixture. Patterson et al. (2004) suggested a Bayesian likelihood
ratio test, comparing the likelihood under the alternative hypothesis
(a given AIM locus is associated with the trait) vs. the one under the
null hypothesis, for cases and controls respectively. Zhu et al. (2004)
described a Z-score statistic, similar to the one proposed by Montana
and Pritchard (2004), for testing the estimated local ancestry pro-
portion is equal to one under the null hypothesis for case-control
and case-only studies.

In contrast, few methods are proposed for the quantitative traits
and to consider multiple loci simultaneously while adjusting for other
risk factors. To apply the aforementioned admixture methods primarily
developed for a dichotomous trait, the common practice has been to
dichotomize subjects with the least and greatest q% (e.g., 20%) of the
quantitative trait value as cases and controls; The remaining subjects
with in-between quantitative trait values are then discarded (Reich et al.
2007; Cheng et al. 2010; Scherer et al. 2010). In addition, ADMIXMAP
(Hoggart et al. 2003) has been proposed for quantitative traits based on
generalized linear model, which is also used by Basu et al. (2009) and
Zhu et al. (2011) for one locus at a time. However, complex traits are
commonly caused by joint effects of the multiple genes and other risk
factors, such as age, sex, and smoking status. Investigating the associ-
ation between AIM loci and a trait, one locus a time, without consid-
ering other loci or risk factors may capture a rather small proportion of
joint effects and will possibly lead to inconsistent conclusions. Similar
considerations have been addressed in association mapping using
shrinkage priors (Wu et al. 2009; Guan and Stephens 2011).

With these motivations, we propose regression-based generalized
admixture mapping (GLEAM) for both quantitative and qualitative
traits. The new approach is able to examine the association between
the complex trait and single or multiple loci simultaneously while also
adjusting for other risk factors. GLEAM is based on generalized linear
models (GLMs) (McCullagh and Nelder 1989), with linear regression
for continuous traits, logistic regression for binary (e.g., case-control)
traits and Poisson regression for count traits. The predictors in GLM
include local ancestries at the given AIM loci and other risk factors.
The local ancestry is defined as the number of alleles from the high-
risk ancestral population, for example, 0, 1, or 2 alleles from African
ancestry at a given AIM locus. The association examined in GLEAM
can be adjusted by other risk factors. We assume for complex genetic
traits that most loci have no association with the trait, a few loci may
have small to modest association (e.g., odds ratio ,2 for binary traits),
and the loci with greater proportions of disease-causing alleles from the
high-risk population would possibly have stronger association with the
traits. This prior knowledge is incorporated into GLEAM by using a qua-
dratic normal moment (QNM) prior (Johnson and Rossell 2010) for the
coefficients in GLM (see Material and Methods) with the benefit of
reducing the type I error while increasing the power, as demonstrated
by the simulations in Results.

The number of AIMs (1500~3000) (Smith et al. 2004) is usually
larger than the number of study subjects, and keeps increasing
(.4000) (Tandon et al. 2011) with advances due to the HapMap
project (The International Hapmap Consortium 2005) and commer-
cially available genome-wide SNP arrays. It is not feasible to consider
loci all together simultaneously due to the “curse of dimensionality”
(Bellman 1961). Rather, we propose a two-stage approach: in the first
stage, we examine the association between local ancestries with the
trait for one locus at a time and select a small subset of susceptibility
loci; in the second stage, the associations between the various combi-
nations of these selected loci and the trait are evaluated and the most
significant ones are reported. The associations in both steps are
assessed by the Bayes factor (BF), the ratio between the likelihood

of observed traits under the alternative hypothesis (presence of asso-
ciation between single or multiple loci with traits) and that under the
null hypothesis (lack of association).

Different from the association mapping based on the SNPs that are
directly measured, the local ancestries are unobserved and are inferred
on the basis of the AIMs via use of the Hidden Markov Model (HMM)
detailed in the Appendices. At each AIM locus, the number of alleles
from the high-risk ancestral population is imputed multiple times for
every subject, using an Markov chain Monte Carlo (MCMC) algorithm.
By using the multiple imputed datasets of local ancestries, we are able to
assess the association between the traits and local ancestries directly
while taking imputation uncertainty into account through Bayesian
averaging. Importantly, our multiple imputation approach preserves the
admixture linkage disequilibrium between the AIM loci, which is crucial
for multilocus admixture mapping in GLEAM. In addition, GLEAM
can also use the local ancestries sampled by other local ancestry
inferring methods, such as HAPMIX (Price et al. 2009).

MATERIAL AND METHODS

Generalized linear model with QNM prior
GLEAM is a regression method that extends the current approaches
in various ways. The most obvious extension is to accommodate both
quantitative and qualitative traits yi through a generalized linear
model with the ability to adjust for covariates Ei = (Ei1, Ei2, . . . , Eiq)9.
Specifically, we use the linear model for continuous traits,

yi ¼ b0 þ b9Si þ a9Ei þ ei; (1)

and the logistic model for dichotomous traits,

logit
�
Prob

�
yi ¼ 1

�� ¼ b0 þ b9Si þ a9Ei; (2)

where p local ancestries Si = (Si1, Si2, . . . , Sip)9 are considered and
centered to have mean zero, b = (b1, b2, . . . , bp)9 and a = (a1,
a2, . . . , aq)9 are the regression coefficients for Si and Ei respec-
tively, and ei �iid  Nð0;s2Þ. We use the Bayes factor to assess the
admixture association between local ancestries and the trait of
interest. The Bayes factor is the ratio of the marginal likelihoods
under the alternative hypothesis, H1: bj 6¼ 0 for j = 1, . . . , p, and
null hypothesis, H0: bj = 0 for j = 1, . . . , p. Marginal likelihoods
remove the parameters from the likelihood by integrating over the
prior distribution. The larger the Bayes factor, the stronger the
evidence in favor of H1.

As a prior distribution for b under H1, we use the QNM prior
having density

fQNM
�
b; t;s2;S

� ¼ b9S21b

Its2p
fNp

�
b; 0; Its2S

�
;

where fNpð�;m;VÞ is the p-dimensional multivariate normal distri-
bution with the mean vector m and covariance matrix V, and t is the
dispersion parameter. The QNM prior is able to incorporate the case
with a large number of loci of tiny effect. As shown in Figure 1A, the
modes of the prior distribution will move toward zero when we
reduce the value of t. For illustration purposes, we only showed
a particular value of t = 0.01, but as we decrease this value, tiny
effects are accommodated. For data containing a large number of
loci of tiny effect, the empirical Bayes approach should estimate
a very small value, and the QNM prior will concentrate on very
small effect sizes. Usual priors face major problems in distinguishing
the signal from the noise, and we argue that nonlocal priors such as

1166 | B. Zhu, A. E. Ashley-Koch, and D. B. Dunson



the quadratic normal provide more accurate results for genetic
effects on complex traits. Hence, The QNM prior increases the
evidence in favor of both the true null and true alternative hypoth-
esis, compared to other prior distributions (e.g., intrinsic and
Cauchy priors) (Johnson and Rossell 2010). Moreover, we specify
s2S as the covariance matrix of the (iterative weighted) least square
estimation of b in the GLM. This choice not only leads to conve-
nient computation but also easily incorporates the prior knowledge
about the effect of local ancestry on the trait. For example, when Si is
orthogonal to Ei, S = (S9S)21 with S = [S1, S2, . . . , SI]9 in the linear
model for the continuous trait. As illustrated by the right panel of
Figure 1, the QNM prior with S = (S9S)21 suggests that for each
locus, the greater the proportion of alleles from the high-risk pop-
ulation (pa), on average the larger the risk effect of local ancestry.
Such relationships frequently are observed in admixture mapping
but not in association mapping based on SNPs in general. More
importantly, when we investigate multiple loci simultaneously, it is
crucial to take the correlation (linkage disequilibrium, LD) between
the local ancestries into consideration. Figure 2 plots several vol-
cano-shaped bivariate QNM densities for various correlations be-
tween two local ancestries. It is clear that for two loci with admixture
linkage equilibrium (as shown in Figure 2A), such as two loci on
different chromosomes, their risk effects would be independent; and
that for two loci with high admixture LD (as shown in Figure 2D),
usually located in the same gene, they would have similar risk effects.

Under the QNM prior for b, the Bayes factor is simply

BFðyÞ ¼ pþ T

pð1þ It̂Þp=2þ1
exp

�
T
2

�
; (3)

where T ¼
It

ŝ2ð1þIt̂Þ
b̂9Ŝb

2 1b̂, b̂ is the maximum likelihood estimate of b,

adjusted by other risk covariates when necessary, Ŝb
2 1 is the corre-

sponding covariance matrix estimate and t̂ and ŝ2 are the empirical
Bayes estimates. Bayes factor (3) is used to identify the loci associ-
ated with the traits, detailed as follows.

Generalized admixture mapping procedure
We propose a two-stage approach for GLEAM. In the first stage, we
examine the marginal association between a single AIM locus and the

trait, using the Bayes factors (3), one locus a time for J AIM loci. The
loci at which log10BF(y) . d are considered susceptibility loci. Al-
though the “one locus a time” approach explores the marginal asso-
ciation and is widely used, marginal association only reflects part of
the relationship between the AIM loci and the trait. Several loci in
different regions may show associations with the trait. Thus, it is
desirable to quantify the evidence for joint association of multiple loci
with the trait. For this reason, in the second stage, we list all possible
combinations of susceptibility loci selected in the first stage. For each
set of susceptibility loci, we can again calculate the Bayes factors for
the joint association at those loci simultaneously. The most significant
ones are reported. The local ancestries at the AIM loci are unobserved
and imputed from the HMM. The imputation uncertainty could be
properly accounted for by calculating weighted average of the Bayes
factors for each imputed local ancestry dataset, which is similar to the
strategy used by Guan and Stephens (2008) in imputation-based as-
sociation mapping for testing untyped variants.

Simulation studies
We carried out simulation studies to assess the performance of
GLEAM in terms of type I error rate and power under various
scenarios and compared it with the method based on Bayesian
likelihood ratio (BLR) by Patterson et al. (2004), which is implemented
by the software ANCESTRYMAP (http://genepath.med.harvard.edu/
�reich/Software.htm) as well as regularized regression methods Lasso
and elastic net (Tibshirani 1996; Zou and Hastie 2005; Friedman et al.
2010). GLEAM and ANCESTRYMAP use slightly different HMMs to
impute the local ancestries and regularized regression methods require
given local ancestries. Because of these differences, we assumed the true
local ancestries were given and focused on evaluating the ability of
localizing susceptibility loci instead of estimating local ancestries.
Our simulations were based on empirical data of local ancestries for
1001 African-American subjects from the HPHB Study (Miranda et al.
2009), with 1296 AIM loci measured across the genome. The MAT-
LAB codes for simulating and analyzing the data are included in
a Supporting Information folder online.

We started by investigating the type I error rates for the local
ancestries that were scattered around different regions of the genome
and in linkage equilibrium. Under this scenario, the falsely localized

Figure 1 Univariate quadratic normal moment prior (A) for t = 0.01 (—), t = 0.05 (���), and t = 0.1 (2�2) when pa = 0.8; (B) for pa = 0.8 (—), pa= 0.9 (. . .), and
pa = 0.99 (2�2) when t = 0.01. In both cases, s2 = 1 and S ¼ ðP1000

i¼1 S2
i Þ21 with Pr(Si = 0) = (12pa)2, Pr(Si = 1) = 2pa(12pa) and PrðSi ¼ 2Þ ¼ p2

a .
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AIM locus would be in the region remote from the true disease
causing locus, which leads to a false positive finding. We first
randomly sampled 1000 AIM loci with replacement from 1296 AIM
loci for 1000 subjects. At each AIM locus, we simulated the local
ancestries measured by the number of alleles from the African
ancestral population from their maximum a posteriori (MAP) fre-
quency estimates under the assumption of Hardy-Weinberg equilib-
rium. Ten sets of trait data were then generated such that we were able
to assess the type I error rates under the genome-wide threshold level
(e.g., a = 1024), by using the following null model for continuous
traits: yi = aEi + ei and for binary traits, logit{Prob(yi = 1)} = aEi;
where the continuous risk covariate Ei and the measurement error ei
followed standard normal distributions. We considered two situations
whereby a = 0 in the absence of a covariate effect and a = 1 in the
presence of a covariate effect.

We next examined power under the single locus alternative models.
We simulated 100 sets of traits. Each set included 1000 subjects and
one disease associated local ancestry whose location was randomly
sampled from 259 AIM loci, where the proportion of African ancestral
population ranged from 0.8321 to 0.8817 and was on the top 20%

percentile among 1296 AIM loci. Given the local ancestry Si, contin-
uous covariates Ei and measurement error ei generated same as that for
the null model, continuous traits were simulated from yi = aEi + bSi +
ei and binary traits from logit{Prob(yi = 1)} = aEi + bSi. Under both
models, the b was specified as b = c · proportion of African ancestral
population which reflected the a priori observation that the locus with
the larger proportion of the high-risk ancestral (here African Ameri-
can) population usually demonstrated stronger association with the
traits. For continuous traits, we chose the values of effect size multiplier
c as 0.2, 0.25, 0.3, 0.35, and 0.4 respectively, with the largest possible
effect size equal to 0.3527. Similarly, we picked the c values as 0.4, 0.5,
0.6, 0.7, and 0.8 for binary traits with the largest possible odds ratio
equal to 1.8537.

We further considered a multilocus alternative model where two
local ancestries were associated with the traits and there existed
admixture linkage disequilibrium. To do so, we generated an artificial
chromosome composed of two pieces from chromosome 1 and
chromosome 4 with the length 139.50 Mb and 114.88 Mb, respectively,
for 1000 subjects, based on empirical data on local ancestries from
HPHB study. In the middle of each chromosome piece with 51 loci,

Figure 2 Bivariate quadratic normal moment prior with ts2 = 0.1 and S = (S9S)21, where S = [S1, S2]9, S1 = (S1,1, S1,2, . . . , S1000,1)9, S2 = (S1,2,
S2,2, . . . , S1000,2)9 and Si1 2 {0, 1, 2} and Si2 2 {0, 1, 2}. We introduce correlation between Si1 and Si2 through the latent variables (Zi1, Zi2), where
Zi1 �iid N1ð0; 1Þ, Zi2 �iid N1ð0;1Þ and Cov(Zi1, Zi2) = r. let Si1 = 0 if Zi1 # C0; Si1 = 2 if Zi1 . C1; and Si1 = 0 otherwise with C0 = F21((12pa)2) and
C1 ¼ F21ð12p2

aÞ where F21(�) denotes normal inverse cumulative distribution function. We consider four scenarios when pa = 0.8: (A) r = 0;
(B) r = 0.25; (C) r = 0.5; and (D) r = 0.75 with contours drawn beneath the probability density function’s surface.
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there is one locus whose proportion of African ancestry population was
among the highest in all 1296 AIM loci. In the simulations, those two
loci are assumed to be associated with traits. We generated 100 sets of
continuous and binary traits respectively, each of which was simulated
similarly to the single locus alternative model except with two local
ancestries involved and both effect size multiplier c values set at 0.7 for
continuous traits and 0.35 for binary traits.

The simulated datasets were analyzed by the GLEAM and the BLR
method. Because the BLR method was primarily developed for binary
traits, the BLR method required transformation of continuous traits
into binary ones, such as defining the subjects with top 20% traits as
the cases and the one with bottom 20% traits as controls.

RESULTS

Simulation studies
Figure 3 presents the empirical type I error rates for both the binary
and continuous traits, with or without covariate effects. For the
GLEAM and the BLR methods, we chose a threshold of 2 for
log10BF(y) to control the genome-wide type I error rates. The regula-
rization parameters of Lasso and elastic net are chosen with
the minimal cross validation error. The loci with nonzero regression
coefficients are regarded as the ones associated with the traits. As
illustrated in Figure 3A and Figure 3B, under the null model that
all the local ancestries are in linkage equilibrium, the type I error rate
is controlled at a low level with the median around 5 · 1024 for

Figure 3 The type I error rates under the null model (note the different scaling of the Y-axis for panels). The type I error rates are presented for
both the binary and continuous traits respectively, with or without covariate effect (denoted by E1 and E0, respectively). For each simulated
dataset, we calculate one type I error rate for each method. The results for 100 replications are summarized by the box plots, where the center bar
is median, bottom and top of the box are the 25th and 75th percentile and the whiskers stretch out until the extreme values. (A) Generalized
admixture mapping; (B) Method based on BLR; (C) Regularized regression with Lasso; (D) Regularized regression with elastic net.
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GLEAM and 4.2 · 1023 for the BLR method. In both cases, those type
I error rates seem overly conservative. However, in the application to
real data, slight admixture linkage disequilibrium between the AIM
loci will significantly inflate the type I error rate close to the nominal
levels (i.e., a = 0.05 or 0.005), which is discussed in the later para-
graphs. Comparing Figure 3A and Figure 3B reveals that the type I
error rates of GLEAM are consistently smaller than those of the
method based on BLR and are little affected by the presence of cova-
riate effects when properly adjusted. The covariates are not considered
by the BLR method and have a mixed effect on type I error rates,
where the median is slightly reduced with the maximal type I error

rates increased. For the regularized regression methods Lasso and
elastic net, the type I errors are significantly inflated, as shown in
Figure 3C and Figure 3D. In addition, when a nonzero covariate
presents, the type I errors will further increase.

Power of the methods also was evaluated for binary and
continuous traits under the single locus alternative model, with or
without covariate effects. We considered various effect sizes of local
ancestries with the results shown in Figure 4. For the binary trait,
when the effect size is small, the BLR method performs better with
larger power. With the increment of the effect sizes, GLEAM gradually
outperforms the BLR method. For both methods, covariates have

Figure 4 Powers for single locus alternative models. Power is calculated for each dataset with 100 replications total for the binary or continuous traits
simulated under the single locus alternative model with or without covariate effect. The · indicates the median of powers by the GLEAM
and • denotes the median of powers by the method based on Bayesian likelihood ratio; ∘ denotes the median of regularized regression with lasso;
∘ denotes the median of regularized regression with elastic net. The whiskers on each bar represent the minimal and maximal powers respectively.
The effect sizes of local ancestries are equal to the multiplication of effect size multiplier c and the proportion of African ancestry population. (A) Binary traits
without covariate effect; (B) Binary traits with covariate effect; (C) Continuous traits without covariate effect; (D) Continuous traits with covariate effect.
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moderate effects on power, which is more obvious for the smaller
effect sizes. For the continuous trait, the GLEAM performs signifi-
cantly better at each effect size. These results were expected since the
BLR method discards part of the dataset in order to transform the
continuous trait into the binary one (case vs. control), which in-
evitably loses power. For all situations considered, the power of the
GLEAM approach increases with the increment of the local ances-
try effect size, most rapidly when the effect sizes are smaller and
then levels off with larger effect sizes. In comparison, the power of
the BLR method increases roughly linearly. Both GLEAM and BLR
are less powerful than the regularized methods especially when the
effect sizes are small. With the growth of the effect size, the power
of GLEAM will quickly increase and be comparable to the ones of
regularized regression.

To understand the impact of admixture linkage disequilibrium on
type I error rates and to evaluate the ability of localizing multiple loci
simultaneously, we generated a set of artificial chromosomes as
described previously, where two loci were associated with the traits,
named as Locus 1 and Locus 2. Besides Locus 1 and Locus 2, we divided
the remaining loci into three regions: region 1 (REG1) with 42 loci and
region 2 (REG2) with 35 loci, where the admixture linkage disequilib-
rium measured by the correlation coefficient between a given locus at
these regions and Locus 1 or Locus 2 was larger than 0.12 respectively;
and region 3 (REG3), the unassociated loci which did not belong to
region 1 and region 2. Strictly speaking, the identified loci except Locus
1 and Locus 2 were all false positives. However, in contrast to the loci
found in region 3, which were completely false findings, the loci
identified in Region 1 and Region 2 were partially correct and could be
regarded as low-resolution findings instead, because the true associated
locus did exist in the nearby region. Therefore, we evaluated the false
positives in three regions separately. An ideal method under the
prespecified genome-wide threshold would lead to few completely false
positives in region 3 and to a small number of partially false positives in
regions 1 and 2, while being able to identify the true associated loci with
high frequency.

Table 1 summarizes the frequencies of identified loci for each locus
or locus combination at different regions by GLEAM, BLR and regular-
ized regression methods. For the GLEAM method, we applied the two-
step approach outlined in the “Generalized admixture mapping proce-
dure” subsection. The results by applying the first step only (GLEAM1)
and by applying the two-step approach (GLEAM2) were both presented.
For binary traits, both the BLR method and GLEAM1 could localize
both Locus 1 and Locus 2 with high power. The type I error rates in
region 1 were around the nominal level (0.025 and 0.003, respectively).
The type I error rates in region 1 and region 2 were higher than the ones
in region 3, which would decrease the resolution of the finding. Com-
pared with GLEAM1, further applying the second step of generalized
admixture mapping procedure (GLEAM2) could significantly improve
the resolution by reducing the type I errors in region 1 (from 0.013 to
0.002) and region 2 (from 0.014 to 0.003). For continuous traits,
GLEAM2 also performed best with much higher power and lower type
I rate than the BLR method. Similar to the simulation results under null
and single locus alternative model, regularized regressions show margin-
ally higher power at the cost of inflated type I error rate, e.g., power 1 for
detecting both locus 1 and 2 with type I error rates 0.023 of Lasso and
0.029 of elastic net at region 3 for the continuous trait.

Application
We applied our approach to data from the Healthy Pregnancy,
Healthy Baby (HPHB) study, which is a prospective cohort study of

pregnant women aimed at identifying genetic, social, and environ-
mental contributors to disparities in adverse birth outcomes in the
Southern United States (Miranda et al. 2009). Consistent with pre-
vious studies, African-American women in HPHB have greater risk
for maternal hypertension than white women during the pregnancy,
which contributes to the poor birth outcomes (Allen et al. 2004). Even
within the African-American subpopulation, some women have much
greater blood pressure, and we hypothesize that one possible contrib-
utor may be the percentage of African ancestry. To explore this hy-
pothesis, we applied GLEAM to investigate the association between
the averaged maternal mean arterial pressure (MAP), defined as (1/3 ·
systolic blood pressure) + (2/3 · systolic blood pressure), during 24 to
28 weeks of pregnancy and local ancestries among these pregnant
African-American women. Clinical and genetic data were available
for 1004 non-Hispanic black women. A total of 1509 SNP AIMs were
genotyped using the Illumina African-American admixture panel. Af-
ter quality control measures described previously (A. E. Ashley-Koch,
Me. E. Garrett, S. Edwards, K. S. Quinn, G. K. Swamy, and M. L.
Miranda, unpublished results), the dataset consisted of 1001 non-
Hispanic black women with 1296 AIMs.

The proposed GLEAM approach was applied to this dataset to
identify the local ancestry associated with the averaged maternal MAP,
a continuous trait, while we adjusted for mother’s age. The local
ancestries were multiply imputed based on the HMM. We first exam-
ined the marginal association between the trait and local ancestries,
one locus a time. The results are summarized in Figure 5, where one
local ancestry on the chromosome 2 was identified with its log10(Bayes
factor) = 2.05 exceeding the threshold 2. With only one local ancestry
localized, the second step of the generalized admixture mapping pro-
cedure was unnecessary. The same data were analyzed by the BLR
method, which treated the subjects with averaged maternal MAP
more than 93.67 (top 20% quantile) as cases and the ones with aver-
aged maternal MAP less than 79.33 (bottom 20% quantile) as control.
No local ancestry was identified as being associated with the averaged
maternal MAP with this approach, presumably due to its relatively
low power compared with the GLEAM approach.

DISCUSSION
When the admixture linkage disequilibrium is used, admixture
mapping is an indispensable tool to localize the alleles that are
associated with the qualitative or quantitative traits and diseases that
vary in prevalence across the ancestral populations. In this article, we
propose a flexible and powerful generalized admixture mapping

n Table 1 The frequency of identified loci for each locus or locus
combination at different regions of the artificial chromosome

Trait Method REG1 REG2 REG3 Locus1 Locus2 Locus1/2a

Binary BLR 0.103 0.047 0.025 0.000 0.000 1.000
GLEAM1b 0.013 0.014 0.003 0.020 0.020 0.960
GLEAM2c 0.002 0.003 0.001 0.030 0.030 0.940
Lasso 0.030 0.025 0.017 0.000 0.000 1.000
Elatic net 0.045 0.038 0.025 0.000 0.000 1.000

Continuous BLR 0.035 0.018 0.011 0.030 0.400 0.560
GLEAM1 0.021 0.017 0.004 0.030 0.000 0.970
GLEAM2 0.004 0.003 0.002 0.040 0.000 0.960
Lasso 0.039 0.031 0.023 0.000 0.000 1.000
Elatic net 0.049 0.037 0.029 0.000 0.000 1.000

BLR, Bayesian likelihood ratio; GLEAM, generalized admixture mapping.
a

The combination of Locus 1 and Locus 2.
b

Applying the first step of generalized admixture mapping procedure only;
c

Applying both steps of generalized admixture mapping procedure;
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approach, which is based on the generalized linear model and is able
to incorporate admixture prior information by using the quadratic
normal moment prior and to adjust for covariates. The proposed
method is applicable to both qualitative and quantitative traits with
satisfactory power while controlling the type I error rates at a low
level, and is able to be easily implemented as we demonstrated with
our HPHB example.

In addition to the flexibility to handle different types of traits, other
attractive generalizations include consideration of multiple loci
simultaneously. It is known that admixture linkage disequilibrium
extends much further than haplotype linkage disequilibrium. Conse-
quently, if we only examine one locus a time, the local ancestries
which are highly correlated to the true disease associated local
ancestry tend to be identified as significant ones as well. As
demonstrated by the simulations, those false positives can be
significantly reduced by considering multiple susceptible loci
simultaneously, which reduce the type I error rates and improve
the mapping resolution. In addition, GLEAM specifies a hidden
Markov model treating the recombination rates varying across the
genome, which allows us to infer the recombination “hotspots” in
admixture population. Moreover, within the generalized linear
model framework, it is straightforward to extend the current method
to populations with more than to two ancestral populations, such as
Hispanic populations, by adding extra ancestry population covari-
ates. It is also easy to consider the interaction between the local
ancestries and covariates with the properly specification of the priors
on interaction coefficients.
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APPENDICES

Hidden Markov Model
For a population-based design, suppose we have I unrelated subjects, each of which has the same set of J AIMs recorded. The local ancestry is

measured by Sij 2 {0, 1, 2}, the number of alleles from the high-risk population A (e.g., African) for the ith subject and the jth AIM. Sij is
unknown and will be imputed using the HMM. For African Americans with African and European ancestral populations, HMM assumes that
given the Sij, the distribution of Xij 2 {0, 1, 2}, the number of variant alleles, is independent of other Sij9 and Xij9 with j9 6¼ j and is specified by the
observation probability mass matrix Pj = {pj(m, n)}3·3 with pj(m, n) = Prob(Xij = n|Sij = m) and

    Xij ¼ 0   Xij ¼ 1   Xij ¼ 2

Pj ¼
Sij ¼ 0
Sij ¼ 1
Sij ¼ 2
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where pAj is the minor allele probability at loci j in the high-risk population A and pBj is the corresponding probability in the low-risk
population B.

The latent states Si = {Sij}1·J, tagging the status of the ancestry blocks, are unobserved and modeled by a Markov chain which considers the
genetic recombination events. Let ri denote the genome-wide proportion of alleles from the high-risk population A for subject i,

Qi0 ¼ ½ð12 riÞ2; 2rið12riÞ; r2i �9 initial state vector, Rij 2 {0, 1, 2} the number of recombination events between AIM loci j 2 1 and j,

QðrÞ
i ¼ fqðrÞi ðm; nÞg3· 3 the conditional state transition matrix given r recombination events between the neighboring AIM loci with

qðrÞi ðm; nÞ ¼ ProbðSij ¼ njSiðj2 1Þ ¼ m;Rij ¼ rÞ. The Markov chain Si is governed by the state transition matrix Qij = {qij(m, n)}3·3 with
qij(m, n) = Prob(Sij = n|Si(j21) = m). Qij ¼

P2
r¼0Q

ðrÞ
i ProbðRij ¼ rÞ, where Qð0Þ

i , Qð1Þ
i and Qð2Þ

i are specified as

Volume 3 July 2013 | Generalized Admixture Mapping | 1173



Sij ¼ 0 Sij ¼ 1 Sij ¼ 2     Sij ¼ 0    Sij ¼ 1    Sij ¼ 2

Qð0Þ
i ¼

Sið j2 1Þ ¼ 0

Sið j2 1Þ ¼ 1

Sið j2 1Þ ¼ 2

 

0
BB@

1

0

0

0

1

0

0

0

1

1
CCA; Qð1Þ

i ¼
Sið j2 1Þ ¼ 0

Sið j2 1Þ ¼ 1

Sið j2 1Þ ¼ 2

 

0
BBBBB@

12 ri ri 0

1
2
ð12 riÞ

1
2

1
2
ri

0 12 ri ri

1
CCCCCA
;

Sij ¼ 0   Sij ¼ 1   Sij ¼ 2

Qð2Þ
i ¼

Sið j2 1Þ ¼ 0

Sið j2 1Þ ¼ 1

Sið j2 1Þ ¼ 2

 

0
BB@

ð12riÞ2 2rið12 riÞ r2i

ð12riÞ2 2rið12 riÞ r2i

ð12riÞ2 2rið12 riÞ r2i

1
CCA;

and Rij ~ Bin(2, gj) a binomial distribution with gj the probability that a recombination event occurs between the neighboring AIM loci in
a single chromosome. Consequently, we can get,

    Sij ¼ 0 Sij ¼ 1   Sij ¼ 2
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We further specify informative prior distributions for the parameters pAj , p
B
j , gj and ri involved in the HMM. Although the pAj of the high-risk

population A is unknown, we have information on pA0j, the proportion of the variant allele j in a subpopulation of high-risk population A (e.g.
YRI for African), from the HapMap or 1000 genome projects. Hence, we expect that pAj would be close to pA0j and specify
pAj � BetaðtApA0j; tAð12 pA0jÞÞ with the expectation EðpAj Þ ¼ pA0j and tA ~ [ [50, 1000] a uniform distribution to reflect the uncertainty in
borrowing the subpopulation information. A similar specification is chosen for pBj based on the proportion of the variant allele j in a sub-
population of low-risk population B (e.g., CEU for European). As for gj, it is well known that the recombination probability is roughly
proportional to dj the genetic distance between (j21)th and jth AIM loci. A common choice is gj = 12exp(2ldj) with l = 6 the number of
recombination events per Morgan since admixture (Falush et al. 2003; Patterson et al. 2004). However, recombination “hotspots” can occur
along the chromosomes where the recombination probabilities are much greater than the other regions (Myers et al. 2005). For this reason,
we avoid the aforementioned parametric specification of gj. Instead, we let gj ~ Beta (tgg0j, tg(1 2 g0j)) with the expectation E(gj) = g0j =
12exp(2ldj). Hence, on average the probability of recombination is proportional to the genetic distance while allowing significant deviation
(e.g. ‘hotspots’) from the average. The deviation is measured by tg with VarðgjÞ ¼

g0jð12 g0jÞ
tgþ1 ¼ m0. In addition, for the admixed population, we often

have knowledge about the proportions of ancestral populations at the population level. For example, the African American population in
general consists of 80% African ancestral population and 20% European ancestral population (Smith and O’Brien, 2005; Winkler et al. 2010).
We borrow this population level information to specify ri, the subject specific proportion of high-risk population A, by letting ri � Beta
(trr0i, tr(1 2 r0i)) with r0i (e.g. 0.8 for African American) and VarðriÞ ¼ r0i ð12 r0iÞ

trþ1 ¼ n0.
We use an MCMC algorithm to sample the local ancestries Si for i = 1. 2, . . . , I, along with other parameters. The details of MCMC are given

as follows.

MCMC algorithm for HMM
We propose an MCMC algorithm for posterior computation of HMM as follows.

(1) Impute the missing AIM Xm
ij . Given the Pj and Sij, Xm

ij 2 f0; 1; 2g can be easily sampled with probability mass pjðSij;Xm
ij Þ.

(2) Update the latent states Si for i = 1. 2, . . . , I. Given the Qi0, Q
ðrÞ
i and Ri = {Rij}1·j, we will use the forward filtering backward sampling

(FFBS) algorithm (Scott 2002) to sample the Si in one block. The FFBS algorithm mixes more rapidly comparing to the direct Gibbs
sampler which samples one Sij a time conditional on the remains of Si. Let X

j
i1 ¼ ½Xi1;Xi2;⋯;Xij�9 and Ri = [Ri1, Ri2, . . . , RiJ]9. We begin

the FFBS algorithm by calculating QF
ij ¼ fqFijðm; nÞg3 · 3 with qFijðm; nÞ ¼ ProbðSiðj2 1Þ ¼ m; Sij ¼ njXj

i1;RiÞ recursively for j = 1. 2, . . . ,
J as
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where qFi0ðmÞ ¼ Qi0, ProbðXijjXj2 1
i1 ;RiÞ ¼

P2
m¼0

P2
n¼0ProbðSiðj2 1Þ ¼ m; Sij ¼ n;XijjXj2 1

i1 ;RiÞ, and qFijðnÞ ¼
P2

m¼0q
F
ijðm; nÞ.

We can then sample the Si backward from SiJ to Si1 with

ProbðSijXi;RiÞ ¼ ProbðSiJ jXi;RiÞ
YJ2 1

j¼1

Prob
�
SiðJ2 jÞjSJiðJ2 jþ1Þ;Xi;Ri

	
;

where

ProbðSiJ jXi;RiÞ ¼ qFiJðSiJÞ;
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The initial state Si0 will be sampled with ProbðSi0jSi;Xi;RiÞ¼ qFi1ðSi0; Si1Þ
qFi1ðSi1Þ

.

(3) Update the recombination count Ri = {Rij}1·J for i = 1, 2, . . . , I. Rij is sampled with full conditional probability mass function
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(4) Update recombination probability gj from Betaðtgg0j þ
PI

i¼1Rij; t
gð12 g0jÞ þ 2I2

PI
i¼1RijÞ for j = 1. 2, . . . , J.

(5) Update the proportion ancestry from population A ri from Binðtrr0i þ nð1Þ01 þ nð1Þ12 þ nð1Þ22 þ nð2Þ�1 þ 2nð2Þ�2 ; trð12 r0iÞ þ
nð1Þ00 þ nð1Þ10 þ nð1Þ21 þ nð2Þ�1 þ 2nð2Þ�0 Þ, where nð1Þkl ¼ PJ

j¼1IðSiðj2 1Þ ¼ k  and  Sij ¼ l  and  Rij ¼ 1Þ and nð2Þ�l ¼ PJ
j¼1IðSij ¼ l  and  Rij ¼ 2Þ.

(6) Update Qð0Þ
i , Qð1Þ

i , Qð2Þ
i and Qi0 based on last ri for i = 1, 2, . . . , I.

(7) Update pAj and pBj for j = 1. 2, . . . , J. Let nkl ¼
PI

i¼1IðSij ¼ k and Xij ¼ lÞ and nVA11 denotes the case that the allele from population A is
variant allele when Sij = 1 and Xij = 1. nVA11 is unobserved and can be imputed from Bin

�
n11;

pA
j
ð12 pB

j
Þ

pA
j
ð12 pB

j
ÞþpB

j
ð12 pA

j
Þ

�
. pAj is then sampled from

BetaðtApA0j þ n21 þ 2n22 þ nVA11 ; t
Að12 pA0jÞ þ n21 þ 2n20 þ n11 2 nVA11 Þ; pBj is sampled from

BetaðtBpB0j þ n01 þ 2n02 þ n11 2 nVA11 ; t
Bð12 pB0jÞ þ n01 þ 2n00 þ nVA11 Þ

(8) Update Pj based on last pAj and pBj for j = 1. 2, . . . , J.
(9) Update tA and tB using Random-Walk Metropolis-Hasting. For tA, we propose the new tA� = tA + e where e � N1ð0;s2

mhÞ. The
posterior distribution of tA, f ðtAjpAÞ}QJ

j¼1fBetaðPA
j jtApA0j; tAð12 pA0jÞÞIð50, tA , 1000Þ. Then, aðtA ;tA�Þ ¼ min



f ðtA�jpAÞ
f ðtA jpAÞ ;1

�
. We draw mA � [

[0, 1]. If mA , a(tA, tA�), then tA is replaced by tA�; otherwise, tA is unchanged. Similar update is conducted for tB.

Volume 3 July 2013 | Generalized Admixture Mapping | 1175


