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ABSTRACT Genomic prediction is expected to considerably increase genetic gains by increasing selection
intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize
(Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the
diversity panel and testcross progenies of 30 F2-derived lines from each of five populations. Although up to
25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction
of testcross performance of F2-derived lines using marker effects estimated in the diversity panel was
on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing
in mean performance. When performance was predicted separately for each breeding population on the
basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain
yield). These results suggest that prediction resulted mostly from differences in mean performance of the
breeding populations and less from the relationship between the training and validation sets or linkage
disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in
maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario
in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed
analysis of the population structure before performing cross validation, and (3) larger training sets with
strong genetic relationship to the validation set.
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In a hybrid maize breeding program, numerous crosses between in-
bred lines and testers need to be evaluated in extensive field trials to
identify hybrids with greater yield potential in the target environment.
Most crosses are discarded after field evaluation due to low general

performance. To save resources, it would be advantageous to select
inbred lines with high general combining ability by the use of mo-
lecular markers, because line performance per se is a poor predictor
of hybrid performance (Melchinger et al. 1998; Hallauer et al. 2010).
Although a large number of quantitative trait loci (QTL) have been
identified, the impact of marker-assisted selection for improving maize
hybrid performance in low- and high-yielding environments has
been marginal (Tuberosa et al. 2007; Araus et al. 2008). This is pri-
marily attributed to the small effects of the detected QTL and the fact
that many detected QTL are specific to a particular genetic back-
ground. Genomic prediction provides an alternative method to use
genomic information in breeding decisions. Rather than using only
significant marker-trait associations to build up the prediction model,
genomic prediction uses all markers simultaneously. The resulting
genomic estimated breeding value (GEBV) is the sum of all marker
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effects (Meuwissen et al. 2001). After successful implementation of
genomic prediction of breeding values of Holstein and Jersey dairy
cattle (Hayes et al. 2009a; Goddard and Hayes 2009; Habier et al.
2010) and genetic risk of human diseases (Daetwyler et al. 2008), it
is now beginning to be used in plant breeding programs (Lorenzana
and Bernardo 2009).

Using genomic prediction, simulation studies and initial exper-
imental results indicate that grain or biomass yield of maize hybrids
can be predicted with high accuracy utilizing one of several different
prediction models (de los Campos et al. 2009; Crossa et al. 2010, 2011;
Albrecht et al. 2011; González-Camacho et al. 2012; Riedelsheimer
et al. 2012; Zhao et al. 2012a). This suggests that rapid increases
in rates of genetic gain are possible because prediction accuracy of
GEBVs is linearly related to the response to selection. Ideally, a train-
ing set composed of genetically diverse individuals, such as different
animal breeds (Hayes et al. 2009a), would be used for prediction.
This would reduce the cost of implementing genomic prediction in
breeding programs considerably as the training set would have wide
applicability. Nevertheless, more validation experiments are neces-
sary to investigate whether published high prediction accuracies can
be applied with as much success in populations different from
those in which the marker effects were estimated (Goddard and
Hayes 2007). Prediction accuracy of genotypes originating from
different populations may be lower than reported in previous studies
using genotypes originating from the same population, particularly,
if (1) the sample size of the training set is small, (2) broad-sense
heritability (H) of the trait of interest is low, (3) information from
close relatives is not available (Habier et al. 2010; Saatchi et al.
2011), and/or (4) linkage phases between single-nucleotide poly-
morphism (SNP) markers and QTL change in sign as suggested for
heterotic pools that evolved separately over a long time (Charcosset
and Essioux 1994).

The accuracy of genomic prediction is estimated by the correla-
tion between the true breeding value and the GEBV. To date,
prediction accuracy has been estimated by evaluating training
and validation sets in single and/or the same set of environments.
Multienvironment models can benefit from genetic correlations
between environments (Burgueño et al. 2012). However, it is un-
known whether marker effects estimated in a set of environments
are predictive of genotype performance in a different set of envi-
ronments. Furthermore, Riedelsheimer et al. (2012) and Saatchi
et al. (2011) indicated that population structure might affect pre-
diction accuracies. If the genotype set can be subdivided into several
clusters or breeding populations that differ in performance level,
the correlation between the true breeding value and the GEBV is
likely, in part, to be driven by these differences as was also reported
for marker assisted selection (Kang et al. 2008) and genomic pre-
diction (Albrecht et al. 2011; Habier et al. 2010; Saatchi et al. 2011).

The objectives of this study were to (1) investigate the effects of
sample size and number of test environments on prediction accuracy
and to evaluate the prediction accuracies in a diversity panel of maize
single crosses with the training and validation set drawn from either
the same or different environments; (2) examine the prospects for
genomic prediction based on testcross data from a diversity panel
with a given tester to predict the performance of testcross progeny
from segregating biparental populations derived from crosses of lines
included or not included in the training set in combination with a
different tester in different environments; (3) evaluate prediction
accuracy in the presence of population structure; and (4) discuss
potential uses for genomic prediction in maize hybrid breeding.

MATERIALS AND METHODS

Genotypes and experimental design
The study used data from two experiments. In Experiment 1, a set of
255 diverse maize inbred lines was used. To summarize in brief, lines
were selected to represent the genetic diversity across drought, low-N,
soil acidity, and pest and disease resistance breeding programs of the
International Maize and Wheat Improvement Center (CIMMYT) and
the International Institute of Tropical Agriculture (Wen et al. 2011).
The lines could be grouped into eight breeding populations based on
pedigree information, environmental adaptation, and main breeding
target (F. San Vicente, personal communication): lines from the re-
gional CIMMYT breeding program in Zimbabwe (n = 36), from the
CIMMYT acid soil tolerance breeding program in Colombia (n = 24),
from the CIMMYT insect resistance breeding program (n = 39), from
the CIMMYT physiology breeding populations selected for drought
tolerance, including the drought tolerant population white (DTPW
C9, n= 17) and yellow (DTPY, n = 15) as well as the La Posta Sequía
breeding population (n = 39), and from CIMMYT’s subtropical
(n =37) and tropical breeding programs (n = 38) in Mexico. For
the remaining 10 genotypes, no information on the breeding origin
was available. Lines were separated into early- and late-flowering
maturity groups and crossed with tester CML312. In total, six trials
were conducted in 2010 to 2011 in Mexico and Thailand for both
maturity groups.

Experiment 2 comprised five biparental F2 populations generated
using nine parental lines, four of which were part of Experiment 1.
The other five parental lines were distantly related to the lines com-
prising Experiment 1 (Supporting Information, Figure S1). One hun-
dred fifty test cross progenies were generated by crossing 30 F2-derived
lines from each cross with tester CML395/CML444 and evaluated in
four trials conducted in 2011 in Zimbabwe and Kenya.

All trials were conducted using alpha-lattice designs with two
replicates in the dry season under well-watered conditions. Hybrids
were evaluated for grain yield, anthesis date, and anthesis-silking in-
terval. Grain yield was recorded in t/ha and adjusted to 12.5% moisture
content. Anthesis date was recorded in days after sowing when 50%
of plants within a plot shed pollen. Anthesis-silking interval was
estimated as the number of days between silking and anthesis date.

SNP genotyping and marker selection
All 255 inbred lines in Experiment 1 and 30 F2-derived lines per
population in Experiment 2 (n = 150) were genotyped with the
MaizeSNP50 Bead Chip from Illumina, Inc. SNP markers were pre-
processed according to the following criteria: (1) less than 5% missing
values, and (2) minor allele frequency greater than 5% to exclude SNPs
with a high rate of genotyping error and low frequency. A total of
37,403 SNPs met these criteria in Experiment 1 and were subsequently
used for validation within Experiment 1. Across Experiment 1 and 2,
18,695 SNP markers were in common after SNP preprocessing. This
set of markers was used for validation between Experiments 1 and 2.

Statistical analysis

Variance components and heritability: Variance components were
estimated treating all effects as random effects. Two genotypes were
in common across maturity groups.

Yijklm ¼ mþ gi þ ej þ geij þmðeÞkðjÞ þ rðemÞlðjkÞ þ bðemrÞmðjklÞ þ eijklm; [1]

where Y is the mean performance of a certain genotype, m is the
overall mean, gi the effect of genotype i, ej the effect of the
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environment j, geij the interaction between genotype i and environ-
ment j, mðeÞkðjÞ the effect of the maturity group k nested in envi-
ronment j, rðemÞlðjkÞ the effect of replicate l nested within maturity
group k and environment j, bðemrÞmðjklÞ the effect of block m nested
within replicate l, maturity group k and environment j, and eijklm the
residual associated with a single plot. The genetic variance among
and within breeding populations and clusters (Qst) was estimated by
partitioning the genotype effect in model [1] into the effect of the
group (breeding population or cluster) and that of the genotype
nested within the group. The environment was defined as the
year-site combination in which the trials were conducted. It should
be noted that individual trials were treated as random samples from
the target environment as the purpose of hybrid testing was to pre-
dict future performance in farmers’ fields.

Broad-sense heritability (H) was estimated across e environments
and r replicates (Hallauer et al. 2010):

H ¼ s2
g

s2
g þ

s2
ge

e
þ s2

e

er

; [2]

where s2
g , s

2
ge, and s2

e are the genetic, genotype-by-environment,
and residual variance components, respectively. H was estimated
for means over all environments (e = 6) as well as in pairs of e = 4
and e = 2 environments.

On the basis of best linear unbiased estimation, hybrid means
were derived in each set of environments (e = 6, 4 or 2) applying
model [1] treating the genotype main effects as fixed and all other
effects as random.

Genetic relationship between lines: The genetic relationship matrix
was estimated by applying method 1 reported by VanRaden (2008).
The resulting estimate was divided by two to obtain the kinship
among lines. Mean kinship within breeding populations was esti-
mated across all off-diagonal elements. Lines were grouped by spec-
ifying the desired number of clusters to n = 5, 10, and 15 using the
complete linkage method (Sorensen 1948). Furthermore, the molec-
ular variance among and within breeding populations and clusters
(Fst) was assessed applying an analysis of molecular variance.

We investigated the linkage disequilibrium (LD) structure in the
largest three breeding populations (i.e., La Posta Sequía, Zimbabwe, and
Entomology) by fitting second-order natural smoothing splines onto
the scatter plot of LD vs. the physical distances between markers on
the same chromosome. Only markers with a marker allele frequency
.0.05 within the respective breeding population were considered for
computing the LD. Furthermore, we investigated the persistence of
linkage phases across the three breeding populations following Tech-
now et al. (2012). Here, only markers with an allele frequency .0.05
within both breeding populations in the comparison were considered.

Genomic prediction: Hybrid performance was predicted for grain
yield, anthesis date, and anthesis-silking interval using ridge
regression best linear unbiased prediction (rrBLUP). BLUPs of
allelic effects were estimated by assuming that all effects have the
same prior distribution and shrinking them toward zero by the same
magnitude (Whittaker et al. 2000). We define predictive ability [r(ŷ,
g)] as the Pearson correlation between the phenotype and the
GEBV. The prediction accuracy [r(ĝ,g)] was estimated as the
correlation between the true breeding value and the GEBV, obtained
by dividing the predictive ability in each run by the square root of H
of the target trait evaluated in the respective set of environments (e =

6, 4, or 2). Different validation (V) procedures were used to evaluate
the effect of different factors on genomic prediction for hybrid
performance (Figure S2):

(V1) Effect of sample size and number of test environments: Fivefold
cross validation was conducted by subdividing the 255 hybrids
of Experiment 1 randomly into five disjoint subsets. One subset
was left out for validation whereas the other four subsets were
used as training set. This procedure was replicated 20 times,
yielding in total 100 runs. Marker effects were estimated in the
training set to predict the performance of the validation set eval-
uated in the same set of environments. The sample size of the
training set was varied (n = 204, 156, or 108) as well as the number
of environments in which the training and validations set were
evaluated (e = 6, 4, or 2).

(V2) Effect of evaluating training and validation sets across differ-
ent environments: Marker effects were estimated in the training
set evaluated in four environments to predict performance of the
validation set evaluated in two different environments applying a
fivefold cross-validation as described in V1.

(V3) Effect of evaluating training and validation sets with low degree
of relationship across different environments, using a different
tester: Performance of hybrids generated by crossing 30 F2-derived
lines with a different tester (Experiment 2) was predicted using
marker effects estimated in 255 hybrids (Experiment 1) evaluated
in different environments.

(V4) Effect of ‘no’ relationship between training and validation set:
Performance of one half of the genotypes in one focal breeding
population or cluster was predicted based on marker effects es-
timated in the remaining breeding populations or clusters. This
procedure was replicated 20 times. In each replication a different
set of genotypes were placed into the two halves of the focal
breeding population or cluster.

(V5) Effect of including relationship between training and validation
set: Performance of one half of the genotypes in a focal breeding
population or cluster was predicted based on marker effects es-
timated from a combination of the remaining breeding popula-
tions or clusters and the other half of the genotypes in the focal
group. This procedure was repeated 20 times as described in V4.

(V6) Prediction based on group means, without the use of markers
effects: In each V1 run, the mean of each breeding population
or cluster in the training set was used to predict the performance
of the genotypes in the validation set. The group mean was esti-
mated across all genotypes of each breeding population and was as
such independent of the mean performance of the validation set.

All analyses were performed using the R software version 2.12.2.
For estimation of variance components and hybrid means, the ASREML
package version 3 was used (Butler et al. 2009). Breeding values were
predicted using the rrBLUP package version 2 (Endelman 2011).

RESULTS

Variance components and heritability
Mean grain yield of hybrids was 6.88 t/ha in Experiment 1 and
7.02 t/ha in Experiment 2 (Table 1). Mean anthesis date was 71 days
after flowering. The early and late maturity group differed in mean
anthesis date by 2.6 days (data not shown). The ratio between genotype-
by-environment variance and the genetic variance ranged between
0.48 and 1.21, with the greatest values observed for grain yield.
H across trials was moderate to high for all traits evaluated in Ex-
periments 1 and 2 (0.61-0.85). Within breeding populations, it
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ranged between 0.34 and 0.84 for grain yield, 0.32 and 0.90 for
anthesis date, and 0.31 and 0.71 for anthesis-silking interval (data
not shown).

Genetic relationship and LD
Mean kinship within breeding populations of Experiment 1 was
between 0.10 and 0.16 for the Colombia acid soil tolerant, La Posta
Sequía, DTPW C9, and DTPY C9 breeding populations (Figure 1).
For lines derived from the Entomology and Zimbabwe breeding pop-
ulations, mean kinship was 0.05 and 0.09, respectively. Mean kinship
was lowest for the Mexico subtropical and Mexico tropical breeding
population. Generally, the relationship within a specific breeding pop-
ulation was greater than among breeding populations. This was par-
ticularly true for La Posta Sequía, which had a low kinship to all other
breeding populations, as also reported in a previous study using the
same genotype set (Wen et al. 2011). LD decayed rapidly with physical
distance between markers (Figure 2). Furthermore, LD was greater
within La Posta Sequía than within the Zimbabwe and Entomology
breeding population. The proportion of identical linkage phases across
breeding populations was considerably lower than 1 and quickly de-
clined to values close to 0.5 with increasing marker distance.

Effects of sample size, different environments,
and tester on genomic prediction
When genotypes were randomly assigned to the training and vali-
dation sets and evaluated in the same environments, predictive ability
ranged between 0.30 and 0.45 (Table 2, V1). Predictive ability declined
slightly with decreasing number of environments but remained stable
when the size of the training set was reduced from 204 to 108
genotypes. Prediction accuracy ranged between 0.43 and 0.50.

Prediction accuracy of performance in two environments was
between 0.47 and 0.49, when based on marker effects estimated in
four environments including the two environments of the valida-
tion set (Table 2, row 3 in V1). Predictive ability decreased by 0.10
(26%), 0.06 (14%), and 0.04 (9%) for grain yield, anthesis date and
anthesis-silking interval, respectively, when the same set of environ-
ments were used to predict performance in two different environ-
ments (Table 2, V2).

Predictive ability for performance of 30 F2-derived lines per pop-
ulation (Experiment 2) was between 20.37 and 0.49 based on marker
effects estimated in Experiment 1 (Table 3, V3). Average predictive
ability across populations varied around zero.

Genomic prediction among and within breeding
populations and clusters
In Experiment 1, predictive ability for performance in a specific group
(breeding population or cluster) using marker effects estimated in the

other groups, ranged between 0.12 to 0.21 for grain yield 20.01 to
0.23 for anthesis date and 20.03 to 0.02 for anthesis-silking interval
with high standard deviations (Table 4, V4). Predictive ability de-
creased when increasing the number of clusters from 5 to 10 to 15
but was lowest when grouping the genotypes into breeding popula-
tions. When 50% of the genotypes in the validation set were included
in the training set (Table 4, V5), predictive ability increased for all
traits. This increase was greater for anthesis date and anthesis-silking
interval than for grain yield.

Breeding populations differed considerably in their mean per-
formance. The difference between the least- and greatest-yielding
population was large (1.15 t/ha, Table 5, Table S1) whereas the
standard error of means was only between 0.01 and 0.04 (data not
shown). Breeding population La Posta Sequía was high yielding,
late flowering, and had a shorter anthesis-silking interval (e.g., better
flowering synchrony) relative to the other breeding populations.
Cross validation methods V1 and V2 (Table 2) partitioned lines
from different breeding populations into both the training and
validation sets, such that some of the predictive ability was driven
by the difference in mean performance (Figure S3). When the mean
of each breeding population in the training set was used to pre-
dict performance of the genotypes in the validation set (Table 4,
V6), predictive abilities were similar to or even greater than in
V1, which used markers to predict performance. Even when the
genotype set was divided into 15 clusters, genotypes of different
breeding populations were placed into the same cluster. This im-
plied that validation in each cluster was conducted across different
breeding population means which led to higher predictive ability
than when predicting the performance of each breeding population
separately.

Analysis of genetic variance revealed that dividing the genotype
set by breeding populations maximized variance among populations
while minimizing variance within populations (Qst; Table 5). For
grain yield, the variance among breeding populations explained
26% of the genetic variance while the variance among 15 clusters
explained only 16% of the genetic variance. This difference was not
observed when estimating the molecular variance (Fst). Here, no
matter how many clusters or breeding populations were used to
group lines, the variance among groups explained about 10% of the
molecular variance.

DISCUSSION

Genomic prediction of performance within a diversity
panel and testcross progenies of F2-derived lines
Within the diversity panel of Experiment 1, the performance of
untested genotypes could be predicted, explaining up to 25% of the

n Table 1 Mean and standard error of grain yield anthesis date, and anthesis-silking interval, their variance components and broad-sense
heritability estimated for 255 hybrids evaluated in six environments (Experiment1) and for 150 testcross progenies of 30 F2-derived lines
from each population evaluated in 4 environments (Experiment 2)

Experiment 1 Experiment 2

Statistic
Grain yield

(t/ha)
Anthesis date

(days after sowing)
Anthesis-silking
interval (days)

Grain yield
(t/ha)

Anthesis date
(days after sowing)

Anthesis-silking
interval (days)

Mean 6.88 6 0.03 71.35 6 0.07 2.03 6 0.03 7.02 6 0.02 62.28 6 0.06 0.46 6 0.11
s2
g 0.42 6 0.05 1.66 6 0.18 0.46 6 0.06 0.53 6 0.11 4.87 6 0.77 0.31 6 0.06

s2
ge 0.44 6 0.03 1.11 6 0.08 0.22 6 0.07 0.64 6 0.10 4.63 6 0.43 0.22 6 0.07

s2
e 0.49 6 0.02 1.39 6 0.06 2.04 6 0.08 1.29 6 0.09 2.47 6 0.16 1.18 6 0.08

H 0.79 0.85 0.69 0.62 0.77 0.61

s2
g, genetic variance; s2

ge, genotype-by-environment variance; s2
e , residual variance; H, broad-sense heritability.
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genetic variance by randomly assigning genotypes to the training
and validation set. Much greater prediction accuracies have been
reported in previous studies in diversity panels (Crossa et al. 2010;
Riedelsheimer et al. 2012) and segregating populations (Albrecht
et al. 2011; Zhao et al. 2012a,b). Regarding the fact that resources
need to be allocated to phenotyping and/or genotyping, we examined

the effect of the sample size and the number of test environments on
prediction accuracy under validation scheme V1 (Table 2). Contrary
to theoretical expectations (Schön et al. 2004; Daetwyler et al. 2007;
Goddard and Hayes 2009), prediction accuracy remained almost
constant when reducing the sample size from 204 to 108 and the
number of test environments from six to two, which suggests that

Figure 1 Heat map of the kinship matrix of 255 lines assigned to 8 breeding populations (Experiment 1).
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besides LD and relatedness, other factors, i.e., population structure,
contributed to the high prediction accuracy values under validation
scheme V1.

By using the diversity panel in Experiment 1 as training set and the
F2-derived lines of five crosses in Experiment 2 as a validation set, we
examined a situation commonly encountered in breeding, where the
environments and the tester used in the training set differ from those
in the validation set, and where the lines to be predicted have limited

relationship with the training set. The predictive abilities observed in
validation scheme V3 were disappointing because they varied around
zero even for crosses of lines included in the training set (Table 3).
According to theoretical results (A. E. Melchinger, unpublished data),
the prediction accuracy expected when changing from tester T1 in
the training set to tester T2 in the validation set is obtained as the
product of the prediction accuracy with the same tester in the train-
ing and validation set and the genetic correlation between the test-
cross performance of the lines with the two testers. Using the same
tester in Experiment 1, predictive ability estimates obtained under
validation schemes V1 and V2 were similar using four environments
for the training set and two common or different environments for
the validation set. Thus, the different environments could not explain
the drop in predictive ability observed under V3. Estimates of ge-
netic correlation among two testers were reported to range between
0.6 and 0.9 for grain yield (Bernardo 1991; Melchinger et al. 1998).
The genetic correlation among the two testers used in the current
study is probably of the same order of magnitude but could not be
estimated because no testcross data were available with common
genotypes. The extent to which line-by-tester interactions contribute
to low predictive ability warrants further research.

Implications of hidden or apparent population structure
on genomic prediction
In segregating maize populations (Albrecht et al. 2011; Zhao et al.
2012b) and different full-sib families in mice (Legarra et al. 2008),
prediction accuracies were low when the training and validation set
comprised genotypes from different crosses or families. Similar to
those studies, we investigated whether part of the drop in predictive
ability observed under V3 relative to V1 is attributable to population
structure. Based on breeders’ information, the 255 lines included in
Experiment 1 originated from eight different breeding populations.
Mean kinship among breeding populations was low (Figure 1), es-
pecially for La Posta Sequía, where LD was higher than within the
Zimbabwe and Entomology breeding populations. Differences in
LD levels between breeding populations hamper the transferability
of marker effects from one breeding population to another, even
when the linkage phases are identical. The proportion of identical
linkage phases across breeding populations quickly declined with
increasing physical distance between markers to values close to 0.5
(Figure 2). Because of differences in LD and linkage phases, marker

Figure 2 (A) Second-order smoothing spline fits of LD (r2) vs. the
distance in mega base pairs (Mbp) between markers on the same
chromosome, within the La Posta Sequía (1), Zimbabwe (2), and
Entomology (3) breeding population. (B) Second-order smoothing
spline fits of proportion of marker pairs with equal linkage phase vs.
the distance in marker base pairs between markers on the same chro-
mosome. The horizontal line indicates a linkage phase of 0.5.

n Table 2 Mean and standard deviation of predictive ability [r(ŷ,g)] and prediction accuracy [r(ĝ,g)] of genomic prediction in Experiment 1
obtained with different number of genotypes (n) and environments (e) in which the training and/or validation set were evaluated

Training Set Validation Set Grain Yield Anthesis date Anthesis-silking interval

n e n e r(ŷ,g) r(ĝ,g) r(ŷ,g) r(ĝ,g) r(ŷ,g) r(ĝ,g)

Prediction of performance evaluating the training and validation set in the same set of environments
V1 204 6 51 6 0.44 6 0.09 0.50 6 0.10 0.45 6 0.09 0.49 6 0.10 0.36 6 0.13 0.43 6 0.16

4 4 0.41 6 0.11 0.49 6 0.13 0.42 6 0.10 0.46 6 0.11 0.38 6 0.10 0.50 6 0.14
4 2 0.36 6 0.12 0.49 6 0.17 0.41 6 0.12 0.49 6 0.16 0.31 6 0.16 0.47 6 0.30
2 2 0.39 6 0.11 0.52 6 0.16 0.41 6 0.12 0.49 6 0.17 0.30 6 0.15 0.46 6 0.29

156 6 100 6 0.44 6 0.10 0.49 6 0.11 0.45 6 0.12 0.49 6 0.13 0.38 6 0.12 0.45 6 0.14
4 4 0.39 6 0.13 0.47 6 0.16 0.43 6 0.12 0.47 6 0.13 0.39 6 0.12 0.51 6 0.16
2 2 0.38 6 0.16 0.50 6 0.21 0.40 6 0.14 0.47 6 0.18 0.31 6 0.18 0.47 6 0.32

108 6 147 6 0.44 6 0.15 0.50 6 0.17 0.46 6 0.11 0.50 6 0.12 0.37 6 0.14 0.44 6 0.17
4 4 0.39 6 0.18 0.46 6 0.21 0.45 6 0.16 0.49 6 0.18 0.40 6 0.17 0.52 6 0.23
2 2 0.40 6 0.14 0.54 6 0.20 0.45 6 0.13 0.54 6 0.17 0.38 6 0.18 0.57 6 0.32

Prediction of performance evaluating the training and validation set in the different environments
V2 204 4 51 2 0.33 6 0.14 0.39 6 0.17 0.40 6 0.16 0.43 6 0.17 0.32 6 0.14 0.43 6 0.19

Genotypes were randomly assigned to the training and validation set under validation schemes V1 and V2
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effects estimated in one breeding population cannot easily be trans-
ferred to another, and this at least partly explains the low accuracies
observed within breeding populations using marker effects estimated
in the other breeding populations (V4 and V5). Interestingly, be-
tween two distinct heterotic pools of maize (flint and dent) used for
hybrid breeding in Europe, linkage phases decreased less, to a min-
imum of about 0.6, even though a minimum of 0.5 could have been
expected given the long separation of the two pools (Technow et al.
2012). The steeper decrease of linkage phases with physical distance
between markers in the current study may relate to the smaller
sample sizes but also to the fact that the lines in Experiment 1 were
developed from rather broad based populations by pedigree breed-
ing accompanied by selection for per se and testcross performance
with emphasis on different adaptive traits (Wen et al. 2011).

Partitioning of the genetic variance across the testcrosses into the
variance among and within breeding populations revealed that the
former explained 26% of the variance for grain yield (Table 5). This
was also reflected by the large difference in the population means
of 1.15 t/ha. Reduced genetic distance among lines originating from
the same breeding population as compared to those from different
breeding populations also was reflected by the heat map of kinship
values based on SNP data (Figure 1). Interestingly, in the analysis of
molecular variance, the proportion of variance among populations
in the total molecular variance was much smaller compared with the
subdivision based on the genetic variance of the agronomic traits.
Furthermore, the ratio between genetic variance among and within
populations was almost three times greater when estimated based
on phenotypic data (Qst) than based on marker data (Fst). This

finding suggests that SNPs do not fully capture the differences among
the lines from different breeding populations. Possibly, selection by
breeders results in greater differences at the phenotypic level than
reflected by genome-wide markers (Porcher et al. 2004; Pujol et al.
2008; Whitlock and Guillaume 2009), an observation that warrants
further research.

To further investigate the effects of population structure on
predictive ability under validation scheme V1, we grouped lines
into different numbers of clusters based on the relationship matrix.
Including information from relatives into the training set improved
within-group prediction substantially for simple traits like anthesis
date and anthesis-silking interval, but less so for grain yield. In all
instances, predictive ability values including genetic relationship
between training and validations sets (V5) were considerably lower
compared with V1. Interestingly, when predictions for the lines were
solely based on the means of the respective breeding population
(V6), we achieved similar or even higher prediction accuracies than
with the high-density, SNP-based genomic prediction in V1. Conse-
quently, prediction accuracy across breeding populations resulted
mostly from differences in mean performance and less from the
relationship between the training and validation set or linkage phases
between breeding populations, as also reported in cattle (Habier et al.
2010; Saatchi et al. 2011). The implications of this result depend on
whether previous knowledge of population structure is available
and whether one is interested in predicting performance within or
among breeding populations. This will be discussed in detail in the
next section, Potential uses for genomic prediction in maize hybrid
development.

n Table 3 Predictive ability for testcross progenies of 30 F2-derived lines from each population evaluated in
environments (Experiment 2) using marker effects estimated from the 255 inbred lines and phenotypic data of
their testcross progenies evaluated in environments (Experiment 1)

Parent 1/2 Breeding Population (Parent 1/2) GY AD ASI

CZL0009a/CML539a Zimbabwe/Zimbabwe 0.29 20.03 20.37
CZL0723/CZL0724 Zimbabwe/Zimbabwe 20.26 20.01 20.10
CZL0723/CZL0719 Zimbabwe/Zimbabwe 20.20 0.49 0.12
CZL0618/VL0655a Zimbabwe/La Posta Sequía 20.22 0.40 20.01
CZL074/VL0645a Zimbabwe/La Posta Sequía 0.06 0.24 0.08
a
These parental lines were included in Experiment 1.

n Table 4 Predictive ability for grain yield, anthesis date, and anthesis-silking interval under validation schemes V4-V6
in Experiment 1

Training Set Validation Set Grain yield Anthesis date Anthesis-silking interval

V4: Prediction for 50% of the genotypes in one group based on marker effects estimated in all other groups
5 cluster 177-232 11-39 0.21 6 0.25 0.23 6 0.28 0.01 6 0.20
10 cluster 177-233 11-39 0.23 6 0.24 0.17 6 0.36 0.02 6 0.26
15 cluster 209-230 12-23 0.16 6 0.23 20.01 6 0.23 0.01 6 0.23
8 populations 216-231 12-19 0.12 6 0.28 0.02 6 0.25 20.03 6 0.18

V5: Prediction for 50% of the genotypes in one group based on marker effects estimated in all other groups plus the other 50% from
the same group

5 cluster 216-244 11-39 0.31 6 0.28 0.46 6 0.21 0.07 6 0.23
10 cluster 216-244 11-39 0.21 6 0.24 0.52 6 0.22 0.16 6 0.27
15 cluster 232-243 12-23 0.23 6 0.26 0.39 6 0.26 0.28 6 0.28
8 populations 236-243 12-19 0.13 6 0.25 0.32 6 0.35 0.03 6 0.28

V6: Prediction based on group means
5 cluster 204 51 0.33 6 0.10 0.21 6 0.11 0.44 6 0.09
10 cluster 0.42 6 0.10 0.31 6 0.12 0.46 6 0.10
15 cluster 0.47 6 0.10 0.37 6 0.10 0.47 6 0.11
8 populations 0.50 6 0.09 0.44 6 0.09 0.46 6 0.10

The training and validation sets were evaluated in the same set of environments (e = 6). Genotypes were grouped into 5, 10 or 15 clusters and 8 breeding populations
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Potential uses for genomic prediction in maize
hybrid development
Before incorporating genomic prediction in a plant breeding pro-
gram, one has to clearly define the breeding scenario in which
genomic prediction will be applied. The following scenarios may
be differentiated:

Training and validation set comprise lines from a diversity panel:
One application of genomic prediction is the performance prediction
of new lines in a pedigree breeding program from a large, diverse
training set of lines with a low average coparentage with the lines
under selection. GEBV accuracy in such populations would result
from exploiting LD between high-density markers and QTL con-
trolling the trait. To be effective, this strategy will likely require
much larger training sets and denser marker maps than methods
depending on close relationships. Simulations for a full sib family
indicate that at least 1000 genotypes are required to achieve a
prediction accuracy of approximately 0.75 with H of the trait of 0.5
(Hayes et al. 2009b). Nevertheless, it has to be regarded that greater
prediction accuracies are likely to be achieved if the training set is
large and includes lines related to the validation set (Habier et al.
2010). In six-row barley, Lorenz et al. (2012) found little-to-no
increase in prediction accuracy when combining distantly related
breeding populations to increase the size of the training popula-
tion. The importance of genetic relationship between training and
validation set is discussed in further detail in breeding scenario C.

Prediction accuracy depends on the prediction problem that the
breeder is attempting to address. If the goal is to predict within a
population that comprises groups of related genotypes with differ-
ences in mean performance, results of this study indicate that this
can lead to false conclusions regarding the prospects of genomic
prediction within groups, which is likely to be the most common
application. Prediction accuracy determined with validation scheme V1
in the presence of different groups with different performance levels
would only be helpful to breeders if no information on those groups
is available, i.e., at the very beginning in breeding for a specific trait
like biogas production (Riedelsheimer et al. 2012). If no reduction

in accuracy is found by reducing the sample size in the training set,
this can be taken as an indication for the presence of hidden pop-
ulation structure. In this case, genotyping could be applied to identify
groups of related lines. Subsequently, phenotyping a representative
sample of lines from each group would be sufficient to determine
differences in the performance level of the different groups. If groups
are present, it is recommended to take this into account in the valida-
tion scheme. Further research is needed on the effect of the number of
distinct populations vs. the number of lines needed to achieve reliable
prediction, as our results show that predictions based on small, highly
structured training sets will not achieve useful accuracy. Burgueño
et al. (2012) showed that for correlated environments, some of the
benefits in predictive accuracy come from borrowing information
from correlated environments and from using information regarding
pedigree and genetic markers. These results indicate that the impact of
environmental structure in combination with population structure on
prediction accuracy should be considered.

Training and validation set are segregating progenies from the
same cross: One application of genomic prediction already used in
commercial maize breeding (A. Gordillo, personal communication)
is the prediction of performance of double haploid lines which have
not been phenotyped, on the basis of a training set derived from the
same cross. Similar within bi-parental family predictions were orig-
inally envisioned by Bernardo and Yu (2007). This approach would be
similar to training and validation within each of the five crosses of
Experiment 2, which could not be assessed in the current study due
to the low sample size for each population (n = 30). Because multi-
location phenotyping is more expensive than one-time genotyping,
this approach would allow breeders to generate large full-sib families
of doubled haploid lines (i.e., n = 200), phenotype only a small
fraction of lines, but large enough to provide reasonably accurate
GEBVs (e.g., n = 50), and advance both the best of the phenotyped
and unphenotyped full sibs to the next testing stage, based on phe-
notype and GEBV, respectively. GEBVs are likely to provide moderate
accuracy for this application because of the close relationship between
the training and validation set and high LD within full-sib families

n Table 5 Minimum and maximum of grain yield, anthesis date, anthesis-silking interval, and the genetic and
molecular variance among (s2

p ) and within (s2
gðpÞ) clusters or breeding populations in Experiment 1

5 Clusters 10 Clusters 15 Clusters 8 Populations

Qst: genetic variance
Grain yield (t/ha)
min-max 6.67-7.27 6.67-7.45 6.44-7.45 6.37-7.52

s2
p 0.05 6 0.05 0.07 6 0.05 0.08 6 0.05 0.11 6 0.07

s2
gðpÞ 0.47 6 0.04 0.42 6 0.04 0.41 6 0.04 0.31 6 0.04

s2
p=ðs2

gðpÞ þ s2
pÞ 0.096 0.143 0.163 0.262

Anthesis date (days after owing)
min-max 71.04-72.09 70.39-72.09 70.49-73.09 70.22-72.12

s2
p 0.13 6 0.15 0.31 6 0.24 0.44 6 0.29 0.28 6 0.19

s2
gðpÞ 3.12 6 0.28 2.86 6 0.27 2.81 6 0.27 1.47 6 0.16

s2
p=ðs2

gðpÞ þ s2
pÞ 0.040 0.098 0.135 0.160

Anthesis-silking interval (days)
min-max 1.45-2.17 1.44-2.34 1.41-2.37 1.36-2.31

s2
p 0.12 6 0.09 0.12 6 0.08 0.11 6 0.07 0.13 6 0.08

s2
gðpÞ 0.57 6 0.05 0.54 6 0.05 0.54 6 0.05 0.35 6 0.05

s2
p=ðs2

gðpÞ þ s2
pÞ 0.174 0.182 0.169 0.271

Fst: molecular variance
s2
p 0.01 0.02 0.02 0.02

s2
gðpÞ 0.17 0.16 0.16 0.16

s2
p=ðs2

gðpÞ þ s2
pÞ 0.077 0.099 0.117 0.094
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even at low marker density and small population sizes (Wong and
Bernardo 2008).

Training and validation set include related and unrelated genotypes:
As illustrated by the comparison of predictive ability under vali-
dation schemes V4 and V5 including genotypes from the same
group in the training set helps to improve predictive ability in the
validation set. In maize (Albrecht et al. 2011), cattle (de Roos et al.
2009) and sheep (Clark et al. 2012), it was reported that when the
cross-validation scheme allowed for a high degree of relatedness,
prediction accuracy increased by 0.26, 0.12, and 0.09, respectively,
relative to that achieved across distantly related families. This in-
crease depends on the degree of relatedness between the groups and
also whether the LD between markers and QTL is stable across differ-
ent groups. The latter will depend on the marker density and the
breeding history of the groups. If the groups trace back to different
races of maize and have been kept separate for a long time and
selected with emphasis on different traits, chances are high that LD
between adjacent markers is low even with a high marker density.
This is similar to the situation in animal breeding, where marker
effects estimated in Holstein dairy cattle did not predict accurately
GEBVs of Jersey dairy cattle, and vice versa (Hayes et al. 2009a).
An open question in this context is how many groups should be in-
cluded and how many individuals per group are required to obtain
high predictive ability in validation schemes V4 and V5.

Recurrent selection with closed synthetic populations of key inbreds:
Another potential application of genomic prediction is rapid-cycle,
marker-based recurrent selection in closed populations, like in La
Posta Sequía but with a sample size .100, that will serve as sources
of inbred lines. The objectives of such a recurrent selection program
are to generate an improved population by increasing the frequency
of favorable alleles while maintaining sufficient genetic variation for
subsequent cycles of selection. One cycle of phenotypic recurrent
selection consists of (1) the development of progenies from a pop-
ulation, (2) phenotypic evaluation of the progenies, and (3) selection
and recombination of the best selected individuals to form a new
population that will form the base material for the next cycle. Geno-
mic prediction would be implemented by genotyping and phenotyp-
ing individuals in step (2) and estimating marker effects to predict
hybrid performance in the subsequent recurrent cycles and recom-
bine the best lines based on GEBVs alone. Phenotyping would only
be used to re-estimate marker effects by evaluating the phenotype of
selected parental lines each third recurrent cycle, thus substantially
reducing both monetary and time costs associated with phenotyping
(Heffner et al., 2009). If these populations were derived from a lim-
ited number of parents, high LD between markers and QTL alleles
should persist for several cycles of selection, allowing increased genetic
gain through acceleration of the breeding cycle with selection based on
GEBV alone.
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